DOI QR코드

DOI QR Code

Designed of rPP/d2w®/ZnO Nanocomposite Flexible Film for Food Packaging and Characterization on Mechanical and Antimicrobial Properties

산화분해촉매를 함유한 rPP/ZnO 나노컴포지트 유연식품포장필름 제조 및 물성 특성 연구

  • 이진경 (주식회사 씨피알에스앤티) ;
  • 길보민 (인하대학교 공과대학 고분자공학과) ;
  • 이동진 (인하대학교 자연과학대학 화학과) ;
  • 이익모 (인하대학교 자연과학대학 화학과)
  • Received : 2016.12.11
  • Accepted : 2018.02.08
  • Published : 2018.04.30

Abstract

In this study, pro-oxidant($d2w^{(R)}$) and rPP/ZnO nanocomposite flexible films for food packaging were prepared, and their mechanical and antimicrobial properties were investigated. As a result, the carbonyl index and hydroxyl index increased with exposured time to heat and UV rays. Surface analysis showed that the addition of zinc oxide improved the dispersibility and compatibility of the polymer, so that the surface of the composite film was smooth and the zinc oxide particles were smaller than the compared film. And it kept the physical properties by heat and UV ray blocking effect, and it worked to reduce decomposition. In the antimicrobial activity test, the microbial reduction rate was 3 logs or more at the use concentration of zinc oxide. The tensile strength was increased and the elongation was decreased. Oxidative degradability of multi-layered film in UV exposured for 72 hours, the molecular weight of the film decreased by 75.6%, 1,294 g/mol Mn and 5,920 g/mol Mw. In the safety analysis of food packaging materials, we obtained that are in standard of polypropylene, a food contact material of domestic law.

본 연구에서는 수출 가능한 식품포장재로 pro-oxidant($d2w^{(R)}$)함유 rPP/ZnO 나노컴포지트 유연필름을 제조하였고, 이 산화분해 필름의 기계적 특성과 항균기능을 조사하였다. 산화분해필름은 일정조건의 열과 자외선 처리를 거친 후 특성분석으로 FT_IR, SEM, UTM, GPC를 측정하여 물성변화를 관찰하였다. 카보닐지수와 하이드록실지수에서 열과 자외선에 노출율이 많아질수록 수치는 상승하였다. 표면분석에서는 rPP/$d2w^{(R)}$/ZnO나노컴포지트 필름의 경우 표면이미지가 매끈하여 ZnO의 첨가가 고분자의 상용성을 향상시켰고, 열과 자외선차단효과로 분해를 감소시키는 효과로 작용하였다. 항균력시험에서는 그람음성균은 대장균으로 그람양성균은 황색포도상구균으로 항균력을 측정하였다. 결과로는, ZnO는 시험에 사용한 농도에서 3로그 이상의 미생물 감소율을 나타내었다. 그러나 유연 필름용으로는 ZnO의 농도가 높아질수록 투명도가 떨어지므로 사용에 제한이 있었다. rPP/$d2w^{(R)}$/ZnO가 함유한 시편에서 인장강도는 40% 상승하였고, 신율은 30% 감소되었다. ZnO를 첨가한 경우 기계적 물성상승과 열 안전성과 자외선차단성을 나타내었다. 산화분해능은 열 노출 $70^{\circ}C$ 온도에서 480시간 경과한 후, 자외선 조사로 72시간 노출 이후 시점의 분자량은 수평균분자량이 1,294 g/mol, 무게평균분자량이 5,920 g/mol로 분해되는 결과를 얻었다. 이것으로 UAE 5009:2009, ASTM 6954의 기준에 준한 필름을 제조할 수 있었다. 비교시편과 본 연구에서 제조한 산화분해필름의 분자량이 80.7%와 75.6% 감소한 결과를 얻음으로서, 자연 산화분해됨을 확인하였다. 식품포장재로서 안전성분석에서는 국내법 중 식품접촉플라스틱 폴리프로필렌의 기준에 적합하였다.

Keywords

References

  1. Hwang, D. S., Kwon, D. H., and Yun, H. S. 2012. Multilayer film and method for manufacturing the same. Korea Patent 10-2012-0108271.
  2. Espitia, P. J. P., Soares, N. D. F. F., Coimbra, J. S. D. R., Andrade, N. J. D., Cruz, R. S., and Medeiros, E. A. A. 2012. Zinc oxide nanoparticles: Synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol. 5: 1447-1464. https://doi.org/10.1007/s11947-012-0797-6
  3. Kim, D. W., Lee, S. N., Kwon, H. O., and Seo, J. 2015. Water resistance and antimicrobial properties of poly(vinyl alcohol) composite films containing surface-modified tetrapod zinc oxide whiskers. Macromol. Res. 23: 1134-1143. https://doi.org/10.1007/s13233-015-3148-4
  4. Choi, H. Y. and Lee, Y. S. 2013. Characteristics of moisture absorbing film impregnated with synthesized attapulgite with acrylamide and its effect on the quality of seasoned laver during storage. J. Food Eng. 829-839.
  5. Tankhiwale, R. and Bajpai, S. K. 2012. Preparation, characterization and antibacterial applications of ZnO-nanoparticles coated polyethylene films for food packaging, Colloids. Surf. B. Biointerfaces. 90: 16-20. https://doi.org/10.1016/j.colsurfb.2011.09.031
  6. Kim, I. S., Lee, H. J., Kim, D.W., and Seo, J. C. 2016. Preparation and characterization of low density polyethylene (LDPE) and flower-like zinc oxide (FZnO) composite films. Korean J. Packag. Sci. Tech. 22: 85-93. https://doi.org/10.20909/kopast.2016.22.3.85
  7. Allen, N. S. and Edge, M. 1992. Aspects of degradation and stabilization of polymers. Fundamental of polymer degradation and stabilization (Chap 4). London: Elsevier Applied Science.
  8. Massardier, V. and Louizi, M. 2015. Photodegradation of a polypropylene filled with lanthanide complexes. Polímeros, 25: 515-522.
  9. Esthappan, S. K., Nair. A. B., and Joseph, R. 2015. Effect of crystallite size of zinc oxide on the mechanical, thermal and flow properties of polypropylene/zinc oxide nanocomposites. Composites: Part B 69: 145-153. https://doi.org/10.1016/j.compositesb.2013.08.010
  10. Ham, C. S. and Yoo, J. K. 2014. Polymer composition for oxo-biodegradable film with high strength in early age and method of manufacturing the same, oxo-biodegradable film thereby. Korea Patent 101365615.
  11. Singh, B. and Sharma, N. 2008. Mechanistic implications of plastic degradation. Polym. Degrad. Stab. 93: 561-584. https://doi.org/10.1016/j.polymdegradstab.2007.11.008
  12. You, Y. S., Oh, Y. S., Kim, U. S., and Choi, S.W. 2015. National certification marks and standardization trends for biodegradable, oxo-biodegradable and bio based plastics. Clean Technology 21: 1-11. https://doi.org/10.7464/ksct.2015.21.1.001
  13. Kim, S. K. 2017, The challenges for entering halal market strategic is oxo-degradation catalytic packaging. The Food and Beverage News, 21. Sep.
  14. Enurates Authority for Standards & Metrology (ESMA)- UAES 5009/2009: Standard & specification for Oxo-Biodegradation of Plastic bags and other disposable plastic objects.
  15. ASTM D 5208-01. 2001. Standard Practice for Fluorescent Ultraviolet (UV) Exposure of Photodegradable Plastics. USA.
  16. Carvalho, C. L., Silveira, A. F., and Derval, S. R. 2013. A study of the controlled degradation of polypropylene containing pro-oxidant agents, 2: 623-634. https://doi.org/10.1186/2193-1801-2-623
  17. Wen, Z. Q., Hu, X. Z., and Shen, D. Y. 1988. The FTIR studies of photo-oxidative degradation of polypropylene. Chinese Journal of Polymer Science 6: 285-288.
  18. ASTM D882:2001 Standard Test Method For Tensil Properties of Thin Plastic Sheeting. Japanese Industrial Standard Jis Z 2801:2010.
  19. MFDS. Standards and Specifications for Food Utensils, Containers and Packages.
  20. Esthappan, S. K. and Joseph, R. 2014. Resistance to thermal degradation of polypropylene in presence of nano zinc oxide. Progress in Rubber, Plastics and Recycling Technology, 30: 211-219.
  21. Jang, S. H., You, Y. S., Lee, Y. S., Kim, J. N., and Park, S. I. 2008. A review on photodegradable plastics as a packaging material. J. Korea Soc. Packag. Sci. Tech. 14: 81-88.
  22. Liu, J., Hu, J., Liu, M., Cao, G., Gao, J., and Luo, Y. 2016. Migration and characterization of nano-zinc oxide from poly- propylene food containers. Am. J. Food Technol. 11: 159-164. https://doi.org/10.3923/ajft.2016.159.164
  23. Esthappan, S. K., Nair, A. B., and Joseph, R. 2015. Effect of crystallite size of zinc oxide on the mechanical, thermal and flow properties of polypropylene/zinc oxide nanocomposites, Composites: Part B 69: 145-153. https://doi.org/10.1016/j.compositesb.2013.08.010