Browse > Article
http://dx.doi.org/10.5757/JKVS.2012.21.3.178

Effect of Gas Phase Cycling Modulation of C2H2/SF6 Flows on the Formation of Carbon Coils  

Lee, Seok-Hee (Department of Science Education, Busan National University of Education)
Kim, Sung-Hoon (Department of Engineering in Energy & Applied Chemistry, Silla University)
Publication Information
Journal of the Korean Vacuum Society / v.21, no.3, 2012 , pp. 178-184 More about this Journal
Abstract
Carbon coils could be synthesized on nickel catalyst layer-deposited silicon oxide substrate using $C_2H_2$ and $H_2$ as source gases and $SF_6$ as an additive gas under thermal chemical vapor deposition system. The characteristics (formation density and morphology) of as-grown carbon coils were investigated as functions of additive gas flow rate and the cycling on/off modulation of $C_2H_2/SF_6$ flows. Even in the lowest $SF_6$ flow rate (5 sccm) in this work, the cycling on/off modulation injection of $SF_6$ flow for 2 minutes could give rise to the formation of nanosized carbon coils, whereas the continuous injection of $SF_6$ flow for 5 minutes could not give rise to the carbon coils formation. With increasing $SF_6$ flow rates from 5 to 30 sccm, the cycling on/off modulation injection of $SF_6$ flow confines the geometry for the carbon coils to the nanosized ones. Fluorine's role of $SF_6$ during the reaction was regarded as the main cause for the confinement of carbon coils geometries to the nano-sized ones.
Keywords
Carbon coil; $SF_6$; Geometry; The cycling modulation; Thermal chemical vapor deposition;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 K. Akagi, R. Tamura, and M. Tsukada, Phys. Rev. Lett. 74, 2307 (1995).   DOI
2 S. Motojima, Y. Itoh, S. Asakura, and H. Iwanaga, J. Mater. Sci. 30, 5049 (1995).   DOI
3 X. Chen, T. Saito, M. Kusunoki, and S. Motojima, J. Mater. Res. 14, 4329 (1999).   DOI
4 X. Chen and S. Motojima, Carbon 37, 1817 (1999).   DOI
5 X. Chen and S. Motojima, J. Mater. Sci. 34, 5519 (1999).   DOI
6 S. Motojima, S. Asakura, T. Kasemura, S. Takeuchi, and H. Iwanaga, Carbon 34, 289 (1996).   DOI
7 S. Yang, X. Chen, and S. Motojima, Carbon 44, 3352 (2004).
8 M. Asmann, J. Heberlein, and E. Pfender, Diamond Relat. Mater. 8, 1 (1999).   DOI   ScienceOn
9 S. -H. Kim, J. Korean Vacuum Soc. 20, 374 (2011).   DOI
10 S. -H. Kim, J. Korean Vacuum Soc. 21, 48 (2012).   DOI   ScienceOn
11 W. R. Davies, R. J. Slawson, and G. R. Rigby, Nature 171, 756 (1953).
12 R. T. K. Baker, Carbon 27, 315 (1989).   DOI   ScienceOn
13 L. J. Pan, T. Hayashida, M. Zhang, and Y. Nakayama, Jpn. J. Appl. Phys. 40, L235 (2001).   DOI   ScienceOn
14 S. Amelinckx, X.B. Zhang, D. Bernaerts, X. F. Zhang, V. Ivanov, and J. B. Nagy, Science 265, 635 (1994).   DOI   ScienceOn
15 S. Yang, X. Chen, K. Takeuchi, and S. Motojima, J. Nanosci. Nanotechnol. 6, 141 (2006).
16 R. Kanada, L.J. Pan, S. Akita, N. Okazaki, K. Hirahara, and Y. Nakayama, Jpn. J. Appl. Phys. 47, 1949 (2008).   DOI
17 W. Wang, K. Yang, J. Gaillard, P. R. Bandaru, and A. M. Rao, Advanced Materials, 20, 179 (2008).   DOI
18 W. In-Hwang, H. Yanagida, and S. Motojima, Mater. Letters 43, 11 (2000).   DOI   ScienceOn