• Title/Summary/Keyword: 김발

Search Result 38, Processing Time 0.023 seconds

A Control for 2-axis Gimbaled Millimeter Wave Seeker using Space Vector PWM of PMSM (영구 자석형 동기전동기의 공간전압벡터 PWM 기법을 적용한 밀리미터 웨이브 탐색기 2축 김발 구동 제어)

  • Lee, Sung-Yong;Lee, Jung-Suk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2386-2391
    • /
    • 2011
  • Tracking and detecting targets by the millimeter wave seeker is affected by moving of platform. In order to perform the tracking performance, stabilization of a millimeter wave seeker which consists of 2-axis gimbals was considered in this study. The feasibility of the analysis and the 2-axis gimbal servo system modeling design were verified along with some simulation results.

Digital Anti-windup PI Controller Design for a Two Axis Gimbal System (2축 김발 시스템의 디지털 와인드업 방지 비례적분 제어기 설계)

  • Kang, Ho-Gyun;Kim, Chi-Yeol;Kim, Sung-Un;Yeou, Bo-Yeoun;Lee, Ho-Pyeong
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1824-1825
    • /
    • 2006
  • 항공기, 차량, 유도탄 등과 같은 동적인 플랫폼에서 표적을 추적하기 위해서는 시선을 안정화하는 외부의 추적루프와 내부의 속도 루프를 포함하는 서보 구조가 필요하다. 본 논문에서는 내부의 속도 루프인 안정화 루프에 큰 입력 전압이 인가되었을 때 구동기(Actuator) 포화 현상에 의해서 공간 안정화 루프 성능이 나빠지지 않게 와인드업 방지(Anti-windup) 기능을 가진 디지털 비례적분(Proportional Integral, PI) 제어기를 설계한다. 디지털 와인드업 방지 비례적분 제어기는 일반적으로 SISO 시스템 설계를 위한 방법으로 와인드업 방지 기능을 가진 R, S, T 다항식으로 표현되는 입출력 형태의 제어기를 이용하여 설계하였다. 설계된 제어기는 모델링에 의한 시뮬레이션 결과와 실험결과를 통해 성능을 분석하였다.

  • PDF

A LOS Rate Estimator for Homing Seekers with 2 Axis Gimbal System (2축 김발 호밍 탐색기를 위한 시선변화율 추정기법)

  • Whang, Ick-Ho;Hwang, Tae-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.12
    • /
    • pp.1024-1030
    • /
    • 2001
  • In this paper, a horizontal LOS(line of sight) rate estimator for conventional sea skimming ASM(anti-ship missile) is proposed. A LOS rate dynamics model for a 2-axis gimbal system and the homing geometry is derived. A new LOS rate estimator is proposed by applying the Kalman filter theory to the LOS rate dynamics model. The proposed filter estimates LOS rates by taking roll motions into account. Simulation results show that the proposed filter produces smaller estimation errors than a conventional method.

  • PDF

Static Structural Analysis of 75 tonf-class Engine with TVC actuation force (TVC 구동력을 고려한 75톤급 엔진 정적 구조 해석)

  • Yoo, Jaehan;Gwak, Junyoung;Kim, Okgu;Jeon, Seongmin;Jeong, Eunhwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.913-914
    • /
    • 2017
  • Structural analyses of a engine system is required in development stage for increasing structural reliability and reducing weight. Attitude of a launch vehicle during flight is controlled by combustion chamber rotation varying with TVC (thrust vector control) actuator displacements. In this study nonlinear static analysis is performed for a 75 tonf-class liquid rocket engine using before and after the TVC actuation.

  • PDF

Tracking of ground objects using image information for autonomous rotary unmanned aerial vehicles (자동 비행 소형 무인 회전익항공기의 영상정보를 이용한 지상 이동물체 추적 연구)

  • Kang, Tae-Hwa;Baek, Kwang-Yul;Mok, Sung-Hoon;Lee, Won-Suk;Lee, Dong-Jin;Lim, Seung-Han;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.490-498
    • /
    • 2010
  • This paper presents an autonomous target tracking approach and technique for transmitting ground control station image periodically for an unmanned aerial vehicle using onboard gimbaled(pan-tilt) camera system. The miniature rotary UAV which was used in this study has a small, high-performance camera, improved target acquisition technique, and autonomous target tracking algorithm. Also in order to stabilize real-time image sequences, image stabilization algorithm was adopted. Finally the target tracking performance was verified through a real flight test.

Target Position Correction Method in Monopulse GMTI Radar (GMTI 표적의 위치 보정 방법)

  • Kim, So-Yeon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.3
    • /
    • pp.441-448
    • /
    • 2020
  • GMTI (Ground Moving Target Indication) radar system can detect ground moving targets and can provide position and velocity information of each target. However, the azimuth position of target has some offset because of the hardware errors such as mechanical tolerances. In this case, an error occurs no matter how accurate the monopulse ratio is. In this paper, target position correction method in azimuth direction has been proposed. The received sum and difference signals of monopulse GMTI system are post-processed to correct the target azimuth angle error. This method is simple and adaptive for nonhomogeneous area because it can be implemented by using only software without any hardware modification or addition.

Analysis of Line of Sight Stabilization Performance based on Direct vs. Indirect of a 2-axis Gimbaled Servo System for Millimeter Wave Seeker (밀리미터파 탐색기 2축 직구동 김발 서보 시스템의 직접 및 간접 시선안정화 성능 분석)

  • Shin, Seungchul;Lee, Sung-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1555-1561
    • /
    • 2018
  • Tracking and detecting targets by the millimeter wave seeker is affected by movement of platform. Stabilization equipments use an inertial sensor to compensate for disturbance of stabilizing gimbal or platform. In the direct line of sight stabilization system, an inertial sensor is mounted on inner gimbal to compensate the disturbance directly, so the performance is excellent and the implementation method is simple. However gimbal design requires somewhat larger volume. Since an inertial sensor is mounted on gimbal base in the indirect line of sight stabilization system, additional space of gimbal is not required for the gimbal design. However, this method does not directly compensate for the disturbance of the line of sight stabilization axis, which can degrade performance. In order to perform the tracking performance, two methods are analyzed for line of sight stabilization performance based on direct and indirect of a 2-axis gimbaled servo system for millimeter wave seeker in this study. The simulation and experimental results validate the performance comparison of two methods.

A Simultaneous Experimental Disturbances Identification of Gyro Stabilized 2-Axes Gimbal System for Disturbance Feedforward Compensation Control (2-축 자이로 안정화 김발 시스템의 외란보상 앞먹임 제어를 위한 실험적 2-축 외란 동시 식별)

  • Yeo, Sung Min;Kang, Min Sig
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.508-519
    • /
    • 2018
  • This paper concerns on stabilization control of a gyro-stabilized 2-axes gimbal system which is mounted on a moving vehicles such as automobiles, armored vehicles, ships, flying vehicles, etc. A target image acquisition system is attached on the inner gimbal, and the gimbal systems are required to retain high stabilization accuracy in the absolute coordinate in order to provide fine target image while vehicle is moving. The stabilization control performance is hardly depended upon disturbance rejection ability of control, and disturbance feedforward compensation is effective because feedforward compensation reduce the amount of disturbance before the disturbance disturbs the systems. This paper suggests an experimental method which can estimate system parameters and disturbance torques by using 3-axes accelerometer mounted on the inner gimbal. Furthermore, a simple disturbance identification method which can be applied to any slanted base conditions has been suggested to identify mass unbalance vector and friction torques of each gimbal simultaneously. By using the estimated parameters, a feedforward compensation has been applied to the gyro-stabilized 2-axes gimbal system. The experimental results showed that the feedforward compensation based on the identification method suggested is effective to improve stabilization performances.

Design of the Step-stare Image Gathering System for an Aerial Reconnaissance (항공 정찰용 Step-stare 영상획득 시스템 설계)

  • Baek, Woonhyuk;Park, Jaeyoung;Ahn, Junghun;Lee, Jungsuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.9
    • /
    • pp.813-820
    • /
    • 2014
  • This paper presents design and performance validation of a method for motion compensation using fast steering mirror. First of all, the schematics of the Electro Optical/Infra-Red (EO/IR) and step-stare image gathering system for an aerial reconnaissance are introduced. Because of the steering mirror with low inertia so called Back scan mechanism (BSM), the fast step-stare image gathering technique that is required for taking a high-definition still image will be realized. After then, the BSM hardware includes motors and feedback sensors are introduced. Also, the motion profile for BSM will be designed to compensate roll scan motion of the gimbals. At the end of this paper, designed profile and tracking performance of the EO/IR system with BSM will be validated through experiments.

Wire Harness Design of Compact Tracking Radar (소형 추적 레이다 와이어 하네스 설계)

  • Kim, Hong-Rak;Kim, Youn-Jin;Woo, Seon-Keol;An, Se-Hwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.4
    • /
    • pp.35-41
    • /
    • 2020
  • The small tracking radar is a very important component of the wire harness design because the components are organically connected. In addition, the cable connected to the signal processing unit and the servo unit having a large number of digital signals should be prepared to prevent the CPU of the signal processing unit from malfunctioning due to electromagnetic noise. Cables for signal transmission in the ◯◯ GHz band must reflect the design of temperature, vibration, and shock. To design a wire harness in a small space, the size of the connector must be minimized. The issues to be considered are described and the design plan is presented.