• Title/Summary/Keyword: 김광제

Search Result 46, Processing Time 0.021 seconds

Water Gas Shift Reaction in Palladium/Ceramic Membrane Reactor (팔라듐/세라믹 막반응기를 이용한 수성가스전환반응)

  • Choi, Tae-Ho;So, Won-Wook;Kim, Kwang-Je;Moon, Sang-Jin;Hyung, Gi-Woo;Chough, Sung Hyo
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.282-287
    • /
    • 2005
  • Palladium membranes, which are permselective to hydrogen separation, were used for the hydrogen purification and in membrane reactors for improving conversions by shifting the reaction equilibrium. Palladium/ceramic composite membranes were prepared by electroless plating technique and then etched in titanium chloride ($TiCl_4$) as a post treatment to enhance the membrane's durability. These membranes were used for membrane reactors in water gas shift (WGS) reaction. CO conversions for the membrane reactor were obtained according to experimental parameters and compared to the traditional reactor without a palladium/ceramic membrane. As a result, CO conversion using palladium membrane reactor at an appropriate condition was over 20~25% greater than that without the membrane reactor. The stability in the long-term test of up to 120 h for WGS reaction with the membrane reactor was good without the degredation of CO conversion.

Effects of Thiuram, Thiazole, and Sulfenamide Accelerators on Silica Filled Natural Rubber Compound upon Vulcanization and Mechanical Properties (Thiuram, Thiazole, Sulfenamide계 가황촉진제가 실리카로 충진된 천연고무 복합소재의 가황 및 물성에 미치는 영향)

  • Choi, Changyong;Kim, Seong-Min;Park, Young-Hoon;Jang, Mi-Kyeong;Nah, Jae-Woon;Kim, Kwang-Jea
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.411-415
    • /
    • 2011
  • Various types of accelerators, thiuram (TMTD, DPTT), thiazole (MBT, MBTS), and sulfenamide (CBS, NOBS) are added into a silica filled natural rubber compound. Their effects on vulcanization and mechanical properties are investigated. TMTD showed the fastest vulcanization rate, the higer maximum torque ($T_{max}$), and the excellent mechanical properties (300% modulus, tensile strength, elongation). MBT and MBTS showed an intermediate vulcanization rate between thiuram and sulfenamide type and added ones, and also showed the lower $T_{max}$ and mechanical properties compared to that of other compounds. Finally, NOBS showed the slowest vulcanization rate and the lower mechanical property but the moderate $T_{max}$.

Effects of Silane Structure on Composite Interaction Parameter (αC)) of Silica Filled Rubber Compounds (실란 구조가 실리카 복합소재 내 구조발달 상호계수(αC)에 미치는 영향)

  • Kim, Sung Min;Kim, Kwang Jea
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.411-416
    • /
    • 2014
  • Due to the polar characteristics of silica compared to carbon black, the degree of silica dispersion, which affects the mechanical properties of rubber compounds, is an important issue. Wolff first introduced the in-rubber structure of particles (${\alpha}_F$) to express the structure development in the compounds; however, with the introduction of bifunctional silanes, his theory could not explain the 3-dimensional network structure of the compounds. Later his theory was expanded to express the composite interaction parameter (in-rubber structure of the compound) (${\alpha}_C$), which included Wolff's filler-filler interaction parameter (${\alpha}_F$), however, there was no reported experimental result proving the theory. This research first experimentally expressed the in-rubber structure of the compound ${\alpha}_C$ (= ${\alpha}_F+{\alpha}_{FP}$(filler-silane-rubber interaction parameter) + ${\alpha}_P$ (rubber-rubber interaction parameter)) upon mono- and bifunctional silane treated silica filled natural rubber (NR) compounds. Using different structure silanes, i.e. PTES, OTES, TESPD, and TESPT, the ${\alpha}_C$ value of each compound was measured and calculated. The ${\alpha}_C$ value of TESPT treated silica filled compound was 1.64, which composed of ${\alpha}_F$ (0.99), ${\alpha}_{FP}$ (0.31), and ${\alpha}_P$ (0.34).

Solid Bases as Racemization Catalyst for Lipase-catalyzed Dynamic Kinetic Resolution of Naproxen 2,2,2-Trifluoroethyl Thioester (리파아제에 의한 나프록센 2,2,2-트리플로로에틸 씨오에스터의 Dynamic Kinetic Resolution을 위한 라세미화 촉매로서의 고체 염기)

  • 김상범;원기훈;문상진;김광제;박홍우
    • KSBB Journal
    • /
    • v.19 no.3
    • /
    • pp.215-220
    • /
    • 2004
  • A variety of solid bases such as inorganic bases, basic anion exchange resins, and resin-bound bases were tested as a catalyst for racemization of (S)-naproxen 2,2,2-trifluoroethyl thioester in isooctane at 45$^{\circ}C$. Among the various bases, DIAIOM WA30, which is a weakly basic anion exchange resin with a tertiary amine based on a highly porous type styrene-divinylbenzene copolymer, showed the highest catalytic activity. The second-order interconversion constant of DIAION WA30 was 8.6${\times}$10$\^$-4/ mM$\^$-1/h$\^$-1/ and about 3 times higher than that of trioctylamine under the same conditions. The rate of DIAION WA30-catalyzed racemization decreased with increasing an amount of water added to the reaction medium. Lipase-catalyzed kinetic resolution of racemic naproxen 2,2,2-trifluoroethyl thioester was successfully carried out under in situ racemization of substrate with DIAION WA30 in isooctane at 45$^{\circ}C$. More than 60% conversion and 99% enantiomeric excess for the desired (S)-naproxen product were obtained. Furthermore, such a solid base catalyst could be easily separated and reused in contrast to trioctylamine.

A Study on Intermediate Layer for Palladium-Based Alloy Composite Membrane Fabrication (팔라듐 합금 복합막 제조를 위한 Intermediate Layer 연구)

  • Hwang, Yong-Mook;Kim, Kwang-Je;So, Won-Wook;Moon, Sang-Jin;Lee, Kwan-Young
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.458-464
    • /
    • 2006
  • The Pd-Ni-Ag alloy composite membrane using modified porous stainless steel (PSS) as a substrate was prepared by a electroless plating technique. In this work, we have introduced the intermediate layer between Pd-based alloy and a metal substrate. As an intermediate layer, the mixtures of nickel powder and inorganic sol such as $SiO_{2}$ sol, $Al_{2}O_{3}$ sol, and $TiO_{2}$ sol were used. The intermediate layers were coated onto a PSS substrate according to various membrane preparation conditions and then $N_{2}$ fluxes through the membranes with different intermediate layers were measured. The surface morphology of the intermediate layer in the mixture of nickel powder and inorganic sol was analyzed using scanning electron microscope (SEM). Finally, the Pd-Ni-Ag alloy composite membrane using the support coated with the mixture of nickel powder and silica as an intermediate layer was fabricated and then the gas permeances for $H_{2}$ and $N_{2}$ through the Pd-based membrane were investigated. The selectivity of $H_2/N_2$ was infinite and the $H_{2}$ flux was $1.39{\times}10^{-2}mol/m^2{\cdot}s$ at the temperature of $500^{\circ}C$ and trans-membrane pressure difference of 1 bar.

Hydrogen production using CdS-TiO2 composite photocatalysts (CdS-TiO2 복합 광촉매계에 의한 수소제조)

  • Kim, Soo-Sun;Jang, Jum-Suk;So, Won-Wook;Kim, Kwang-Je;Moon, Sang-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.11 no.4
    • /
    • pp.161-169
    • /
    • 2000
  • In the case of photocatalytic hydrogen production from water, the performance-property relationships of CdS-TiO2 film type composite catalysts were investigated. To control the physical properties of the primary particles, the mixture of CdS and TiO2 nano-sols prepared by the sol-gel method at room temperature was hydrothermally treated at 240oC for 12hr. The film electrodes were prepared by the casting method. The photocurrents measured by a photoelectrochemical method and the hydrogen production rates measured by a photochemical method were closely dependent on the physical properties such as crystalline form, primary particle size and CdS/TiO2 mole ratio, and these varied in the range of 1.2~2.6 mA/cm2 and $1.0{\sim}1.6{\times}10-3mol/hr$, respectively.

  • PDF