Browse > Article
http://dx.doi.org/10.7317/pk.2014.38.4.411

Effects of Silane Structure on Composite Interaction Parameter (αC)) of Silica Filled Rubber Compounds  

Kim, Sung Min (Dong Ah Tire & Rubber Co., Ltd.)
Kim, Kwang Jea (Dong Ah Tire & Rubber Co., Ltd.)
Publication Information
Polymer(Korea) / v.38, no.4, 2014 , pp. 411-416 More about this Journal
Abstract
Due to the polar characteristics of silica compared to carbon black, the degree of silica dispersion, which affects the mechanical properties of rubber compounds, is an important issue. Wolff first introduced the in-rubber structure of particles (${\alpha}_F$) to express the structure development in the compounds; however, with the introduction of bifunctional silanes, his theory could not explain the 3-dimensional network structure of the compounds. Later his theory was expanded to express the composite interaction parameter (in-rubber structure of the compound) (${\alpha}_C$), which included Wolff's filler-filler interaction parameter (${\alpha}_F$), however, there was no reported experimental result proving the theory. This research first experimentally expressed the in-rubber structure of the compound ${\alpha}_C$ (= ${\alpha}_F+{\alpha}_{FP}$(filler-silane-rubber interaction parameter) + ${\alpha}_P$ (rubber-rubber interaction parameter)) upon mono- and bifunctional silane treated silica filled natural rubber (NR) compounds. Using different structure silanes, i.e. PTES, OTES, TESPD, and TESPT, the ${\alpha}_C$ value of each compound was measured and calculated. The ${\alpha}_C$ value of TESPT treated silica filled compound was 1.64, which composed of ${\alpha}_F$ (0.99), ${\alpha}_{FP}$ (0.31), and ${\alpha}_P$ (0.34).
Keywords
in-rubber structure of the compound (${\alpha}_C$); silica; silane; Wolff's theory; natural rubber (NR);
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. M. Kim, M. K. Jang, C. Y. Choi, J. W. Nah, and K. J. Kim, Elastomer, 47, 23 (2012).   DOI
2 K. J. Kim, Asian J. Chem., 25, 5119 (2013).
3 J. W. Brinke, P. J. Swaaij, L. A. E. M. Reuvekamp, and J. W. M. Noordermeer, Rubber Chem. Technol., 76, 12 (2003).   DOI
4 Product information Si $69^{(R)}$, Evonik Indistries AG (2012).
5 Product information Si $266^{(R)}$, Evonik Indistries AG (2012).
6 K. J. Kim and J. VanderKooi, Int. Polym. Proc., 19, 364 (2004).   DOI
7 E. P. Plueddemann, Silane Coupling Agents, 2nd Ed., Plenum Press, New York, 1982.
8 K. J. Kim and J. VanderKooi, Rubber Chem. Technol., 78, 84 (2005).   DOI   ScienceOn
9 H.-D. Luginsland, J. Fröhrich, and A. Wehmeier, Rubber Chem. Technol., 75, 563 (2002).   DOI
10 S. Wolff, Kautsch. Gummi. Kunstst., 22, 367 (1969).
11 S. Wolff, Kautsch. Gummi. Kunstst., 23, 7 (1970).
12 R. K. Iler, The Chemistry of Silica, John Wiley & Sons, New York, 1979.
13 K. J. Kim and J. VanderKooi, Kautsch. Gummi Kunstst., 55, 518 (2002).
14 S. Wolff, Rubber Chem. Technol., 69, 325 (1996).   DOI   ScienceOn
15 R. K. Gupta, E. Kennal, and K. J. Kim, Polymer Nanocomposites Handbook, CRC Press, Boca Raton, 2009.
16 K. J. Kim and J. L. White, J. Ind. Eng. Chem., 7, 50 (2001).
17 K. J. Kim and J. VanderKooi, Composite Interfaces, 11, 471 (2004).   DOI   ScienceOn
18 K. J. Kim and J. VanderKooi, J. Appl. Polym. Sci., 95, 623 (2005).   DOI   ScienceOn