Browse > Article
http://dx.doi.org/10.14478/ace.2011.22.4.411

Effects of Thiuram, Thiazole, and Sulfenamide Accelerators on Silica Filled Natural Rubber Compound upon Vulcanization and Mechanical Properties  

Choi, Changyong (Department of Polymer Science and Engineering, Sunchon National University)
Kim, Seong-Min (Dong Ah Tire & Rubber Co. Ltd)
Park, Young-Hoon (Department of Polymer Science and Engineering, Sunchon National University)
Jang, Mi-Kyeong (Department of Polymer Science and Engineering, Sunchon National University)
Nah, Jae-Woon (Department of Polymer Science and Engineering, Sunchon National University)
Kim, Kwang-Jea (Dong Ah Tire & Rubber Co. Ltd)
Publication Information
Applied Chemistry for Engineering / v.22, no.4, 2011 , pp. 411-415 More about this Journal
Abstract
Various types of accelerators, thiuram (TMTD, DPTT), thiazole (MBT, MBTS), and sulfenamide (CBS, NOBS) are added into a silica filled natural rubber compound. Their effects on vulcanization and mechanical properties are investigated. TMTD showed the fastest vulcanization rate, the higer maximum torque ($T_{max}$), and the excellent mechanical properties (300% modulus, tensile strength, elongation). MBT and MBTS showed an intermediate vulcanization rate between thiuram and sulfenamide type and added ones, and also showed the lower $T_{max}$ and mechanical properties compared to that of other compounds. Finally, NOBS showed the slowest vulcanization rate and the lower mechanical property but the moderate $T_{max}$.
Keywords
accelerators; silica; natural rubber; vulcanization characteristics; physical properties;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 C. Goodyear, U. S. Patent 3,633 (1844).
2 L. Bateman, C. G. Moore, M. Porter, and B. Saville, The Chemistry and Physics of Rubber like Substances, ed., L. Bateman, Chapter 19, John Wiley and Sons, New York (1963).
3 S. B. Molony, U. S. Patent 1,343,224 (1920).
4 M. L. Weiss, U. S. Patent 1,411,231 (1922).
5 C. W. Bedford, U. S. Patent 1,371,662 (1921).
6 L. B. Sebrell and C. W. Bedford, U. S. Patent 1,544,687 (1925).
7 G. Bruni and E. Romani, Indian Rubber Journal, 62 (1921).
8 E. Zaucker, M. Bogemann, and L. Orthner, U. S. Patent 1,942,790 (1934).
9 M. W. Harman, U. S. Patent 2,100,692 (1937).
10 F. W. Barlow, Rubber compounding: principles, materials, and techniques, CRC Press, New York (1993).
11 A. Y. Coran and J. E. Kerwood, U. S. Patent 3,546,185 (1970).
12 R. Rauline, Michelin, EUR Patent EP0501, 227 (1991).
13 M. P. Wagner, Rubber Chem. Technol., 49, 703 (1976).   DOI   ScienceOn
14 S. Wolff, Kautsch. Gummi Kunstst, 34, 280 (1981).
15 S. Wolff, Rubber Chem. Technol., 55, 967 (1982).   DOI   ScienceOn
16 E. P. Plueddemann, Silane Coupling Agents, Plenum Press, New York (1982).
17 K. J. Kim and J. Vanderkooi, Kautsch. Gummi Kunstst., 55, 518 (2002).
18 K. J. Kim and J. Vanderkooi, Int. Polym. Proc., 17, 192 (2002).   DOI
19 K. J. Kim and J. Vanderkooi, Composite Interfaces, 11, 471 (2004).   DOI   ScienceOn
20 K. J. Kim and J. Vanderkooi, J. Korean Ind. Eng. Chem., 10, 772 (2004).
21 K. J. Kim and J. Vanderkooi, Rubber Chem. Technol., 78, 84 (2005).   DOI   ScienceOn
22 K. J. Kim and J. Vanderkooi, J. Appl. Polym. Sci., 95, 623 (2005).   DOI   ScienceOn
23 A. Y. Coran, in Science and Technology of Rubber, J. E. Mark, B. Erman, and F. R. Eirich (Eds.), 3rd ed., Chapter 7, Academic Press, New York (2005).
24 R. K. Gupta, E. Kennal, and K. J. Kim, Polymer Nanocomposites Handbook, CRC Press, Boca Raton (2009).
25 K. J. Kim, Carbon Letters, 10, 101 (2009).   DOI   ScienceOn
26 K. J. Kim, Carbon Letters, 10, 109 (2009).   DOI   ScienceOn
27 K. J. Kim and J. L. White, J. Korean Ind. Eng. Chem., 7, 50 (2001).
28 K. J. Kim, Elastomers and Composites, 44, 134 (2009).
29 D. K. Jeon and K. J. Kim, Elastomers and Composites, 44, 252 (2009).
30 A. Y. Coran, Rubber Chem. Technol., 38, 1 (1965).   DOI
31 M. M. Coleman, J. R. Shelton, and J. K. Koening, Rubber Chem. Technol., 46, 957 (1973).   DOI   ScienceOn
32 B. A. Dogadkin, V. Selyukova, Z. Tarasova, A. B. Dobromyslova, M. S. Feldshtein, and M. Kaplunov, Rubber Chem. Technol., 31, 348 (1958).   DOI
33 B. A. Dogadkin, O. N. Beliatskaya, A. B. Dobromyslova, and M. S. Feldshtein, Rubber Chem. Technol., 33, 361 (1960).   DOI
34 M. H. S. Gradwell and W. J. McGill, J. Appl. Polym. Sci., 51, 177 (1994).   DOI   ScienceOn
35 M. H. S. Gradwell and W. J. McGill, J. Appl. Polym. Sci., 51, 169 (1994).   DOI   ScienceOn
36 M. H. S. Gradwell, K. G. Hendrikse, and W. J. McGill, J. Appl. Polym. Sci., 72, 1235 (1999).   DOI   ScienceOn
37 A. Y. Coran, Rubber Chem. Technol., 37, 679 (1964).   DOI
38 M. H. S. Gradwell and W. J. McGill, J. Appl. Polym. Sci., 58, 2193 (1995).   DOI
39 M. H. S. Gradwell and W. J. McGill, J. Appl. Polym. Sci., 61, 1131 (1996).   DOI   ScienceOn
40 M. H. S. Gradwell and W. J. McGill, J. Appl. Polym. Sci., 61, 1515 (1996).   DOI   ScienceOn
41 F. W. H. Kruger and W. J. McGill, J. Appl. Polym. Sci., 42, 2643 (1991).   DOI
42 F. W. H. Kruger and W. J. McGill, J. Appl. Polym. Sci., 42, 2661 (1991).   DOI
43 F. W. H. Kruger and W. J. McGill, J. Appl. Polym. Sci., 42, 2669 (1991).   DOI
44 K. J. Kim and J. Vanderkooi, Int. Polym. Proc., 18, 156 (2003).   DOI