• Title/Summary/Keyword: 기후변화 적응력

Search Result 10, Processing Time 0.033 seconds

Application Study of Vulnerability Assessment Models for Water Resources to Climate Change by Spatial and Watershed Scales (수자원 기후변화 취약성 평가모형의 공간 및 유역규모별 적용 연구)

  • Chung, Ji Woong;Lee, Woo-Kyun;Cui, Guishan;Lee, Sang Chul;Choi, Sungho;Choi, Hyun-Ah
    • Journal of Climate Change Research
    • /
    • v.1 no.1
    • /
    • pp.21-30
    • /
    • 2010
  • In this study, vulnerability of water resources to climate change was assessed in terms of flood, drought and water management. Criteria and indicators were employed for assessing the vulnerability. The criteria used to assess the vulnerability was sensitivity of the study area, the exposure to climate and the adaptability to climate change. These criteria were quantified and standardized using corresponding indicators. Vulnerability of water resources to climate change is assessed to be generally increasing over time. The appropriate watershed scales are the large drainage basin for national level vulnerability assessment and the small drainage basin for local one.

Predicting Future Terrestrial Vegetation Productivity Using PLS Regression (PLS 회귀분석을 이용한 미래 육상 식생의 생산성 예측)

  • CHOI, Chul-Hyun;PARK, Kyung-Hun;JUNG, Sung-Gwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.1
    • /
    • pp.42-55
    • /
    • 2017
  • Since the phases and patterns of the climate adaptability of vegetation can greatly differ from region to region, an intensive pixel scale approach is required. In this study, Partial Least Squares (PLS) regression on satellite image-based vegetation index is conducted for to assess the effect of climate factors on vegetation productivity and to predict future productivity of forests vegetation in South Korea. The results indicate that the mean temperature of wettest quarter (Bio8), mean temperature of driest quarter (Bio9), and precipitation of driest month (Bio14) showed higher influence on vegetation productivity. The predicted 2050 EVI in future climate change scenario have declined on average, especially in high elevation zone. The results of this study can be used in productivity monitoring of climate-sensitive vegetation and estimation of changes in forest carbon storage under climate change.

Changes of ecological niche in Quercus serrata and Quercus aliena under climate change (갈참나무와 졸참나무의 기후변화에 따른 생태지위 변화)

  • Yoon-Seo Kim;Jae-Hoon Park;Eui-Joo Kim;Jung-Min Lee;Ji-Won Park;Yeo-Bin Park;Se-Hee Kim;Ji-Hyun Seo;Bo-Yeon Jeon;Hae-In Yu;Gyu-Ri Kim;Ju-Seon Lee;Yeon-Jun Kang;Young-Han You
    • Journal of Wetlands Research
    • /
    • v.25 no.3
    • /
    • pp.205-212
    • /
    • 2023
  • This study was attempted to find out how the ecological niche and interspecies relationship of Quercus aliena and Q. serrata, which are the main constituents of potential natural vegetation along the riverside of mountains in Korea, under climate change conditions. To this end, soil moisture and soil nutrients were treated with 4 grad ients under climate change conditions with elevated CO2 and temperature, plants we re harvested at the end of the growing season, growth responses of traits were measured, ecological niche breadth and overlap were calculated, and it was compared with that of the control group(ambient condition). In addition, the relationship between the two species was analyzed by principal component analysis using trait values. As a result, the ecological niche breadth of Q. aliena was wider than that of Q. serrata under the moisture environment conditions under climate change. Under nutrient conditions, the ecological niche of the two species were similar. In addition, the ecological overlap for soil moisture of Q. aliena and Q. serrata was wider than the soil nutrient gradient under climate change. The species with traits in which the increase in ecological niche breadth due to climate change occurred more than the decrease was Q. aliena in both water and nutrient gradients. And in the responses of the population level, due to climate change, the adaptability of Q. aliena was higher than that of Q. serrata under the soil moisture condition, but the two species were similar under the nutrient condition. These results mean that the competition between the two species occurs more severely in the water environment under climate change conditions, and at that time, Q. aliena has higher adaptability than Q. serrata.

The ecological response of the climate change indicator species, Korean fir (Abies koreana E. H. Wilson) (기후변화 지표종 구상나무(Abies koreana E. H. Wilson)의 생태학적 반응)

  • Yoon Seo Kim;Se Hee Kim;Jung Min Lee;Ji Won Park;Yeo Bin Park;Jae Hoon Park;Eui Joo Kim;Kyeong Mi Cho;Yoon Kyung Choi;Ji Hyun Seo;Joo Hyun Seo;Gyu Ri Kim;Ju Seon Lee;Do Hun Ryu;Min Sun Kim;Young Han You
    • Journal of Wetlands Research
    • /
    • v.26 no.1
    • /
    • pp.62-71
    • /
    • 2024
  • To assess the ecological changes of Korean fir (Abies koreana E. H. Wilson) under climate change conditions, growth and physiological responses were analyzed over a 5-year period in a control group (outdoors) and in a treatment group where the temperature and CO2 levels were elevated to closely resemble RCP 4.5 conditions. The results showed an increasing trend in annual branch length of A.koreana in the climate change treatment group over time. While climate change conditions did not significantly impact the morphological differences of A.koreana leaves, they did influence the biomass of the leaves, suggesting that as climate change progresses, the productivity of A.koreana leaves may decline. On the other hand, the chlorophyll content in A.koreana under climate change conditions was higher in the climate change treatment group, whereas the photosynthesis rate, transpiration rate, water use efficiency and stomatal conductance was higher in the control group. This suggests that an environment with elevated temperature and CO2 could influence an increase in stomatal density, but having a negative impact on photosynthetic reactions. Further research on stomatal density under each environmental treatment will be required to confirm this hypothesis. Additionally, as this study only observed changes in leaf biomass, further empirical research should be considered to understand the changes in biomass of A.koreana under climate change conditions. In conclusion, the environmental adaptability of A.koreana is expected to weaken in the long term under elevated temperatures and CO2.

Effects of an Extreme Heat Adaptation Program in Hypertensive Patients (고혈압환자의 폭염 적응력 증진을 위한 프로그램 효과)

  • Jeong, Seong Hee;Kim, Nam Soon;Chae, Sumi;Lee, Eun Ju
    • Journal of Korean Biological Nursing Science
    • /
    • v.16 no.3
    • /
    • pp.164-172
    • /
    • 2014
  • Purpose: The purpose of this study was to identify the effects of an extreme heat Adaptation Program on the blood pressure, stress response, self-efficacy, and knowledge of management of hypertension and extreme heat of patients who suffered from hypertension. Methods: A quasi-experimental study with a non-equivalent control group pretest-posttest design was used. The data collection period was between July 2 and August 20, 2012. Thirty-seven patients participated in the study (18 in the experimental group and 19 in the control group). Data were analyzed using $X^2$-test, t-test, and Cronbach's alpha coefficients with SPSS/WIN 19.0. Results: Patients who participated in the program showed statistically significant improvements in systolic blood pressure (SBP), self-efficacy, and knowledge of management of hypertension and extreme heat. Conclusion: The results indicate that this extreme heat adaptation program can be utilized for patients suffering from hypertension in order to reduce their SBP and to increase self-efficacy and knowledge of management of hypertension and extreme heat. Therefore, it is recommended that this program be used for elderly patients suffering from chronic disease.

Comprehensive Review on the Implications of Extreme Weather Characteristics to Stormwater Nature-based Solutions (자연기반해법을 적용한 그린인프라 시설의 극한기후 영향 사례분석)

  • Miguel Enrico L. Robles;Franz Kevin F. Geronimo;Chiny C. Vispo;Haque Md Tashdedul;Minsu Jeon;Lee-Hyung Kim
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.353-365
    • /
    • 2023
  • The effects of climate change on green infrastructure and environmental media remain uncertain and context-specific despite numerous climate projections globally. In this study, the extreme weather conditions in seven major cities in South Korea were characterized through statistical analysis of 20-year daily meteorological data extracted fro m the Korea Meteorological Administration (KMA). Additionally, the impacts of extreme weather on Nature-based Solutions (NbS) were determined through a comprehensive review. The results of the statistical analysis and comprehensive review revealed the studied cities are potentially vulnerable to varying extreme weather conditions, depending on geographic location, surface imperviousness, and local weather patterns. Temperature extremes were seen as potential threats to the resilience of NbS in Seoul, as both the highest maximum and lowest minimum temperatures were observed in the mentioned city. Moreover, extreme values for precipitation and maximum wind speed were observed in cities from the southern part of South Korea, particularly Busan, Ulsan, and Jeju. It was also found that extremely low temperatures induce the most impact on the resilience of NbS and environmental media. Extremely cold conditions were identified to reduce the pollutant removal efficiency of biochar, sand, gravel, and woodchip, as well as the nutrient uptake capabilities of constructed wetlands (CWs). In response to the negative impacts of extreme weather on the effectiveness of NbS, several adaptation strategies, such as the addition of shading and insulation systems, were also identified in this study. The results of this study are seen as beneficial to improving the resilience of NbS in South Korea and other locations with similar climate characteristics.

Temporal variation in the community structure of green tide forming macroalgae(Chlorophyta; genus Ulva) on the coast of Jeju Island, Korea based on DNA barcoding (DNA 바코드를 이용한 제주도 연안 파래대발생(green tide)을 형성하는 갈파래(genus Ulva) 군집구조 및 주요 종 구성의 시간적 변이)

  • Hye Jin Park;Seo Yeon Byeon;Sang Rul Park;Hyuk Je Lee
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.4
    • /
    • pp.464-476
    • /
    • 2022
  • In recent years, macroalgal bloom occurs frequently in coastal oceans worldwide. It might be attributed to accelerating climate change. "Green tide" events caused by proliferation of green macroalgae (Ulva spp.) not only damage the local economy, but also harm coastal environments. These nuisance events have become common across several coastal regions of continents. In Korea, green tide incidences are readily seen throughout the year along the coastlines of Jeju Island, particularly the northeastern coast, since the 2000s. Ulva species are notorious to be difficult for morphology-based species identification due to their high degrees of phenotypic plasticity. In this study, to investigate temporal variation in Ulva community structure on Jeju Island between 2015 and 2020, chloroplast barcode tufA gene was sequenced and phylogenetically analyzed for 152 specimens from 24 sites. We found that Ulva ohnoi and Ulva pertusa known to be originated from subtropical regions were the most predominant all year round, suggesting that these two species contributed the most to local green tides in this region. While U. pertusa was relatively stable in frequency during 2015 to 2020, U. ohnoi increased 16% in frequency in 2020 (36.84%), which might be associated with rising sea surface temperature from which U. ohnoi could benefit. Two species (Ulva flexuosa, Ulva procera) of origins of Europe should be continuously monitored. The findings of this study provide valuable information and molecular genetic data of genus Ulva occurring in southern coasts of Korea, which will help mitigate negative influences of green tide events on Korea coast.

A study of a system for predicting damages of complex disasters considering the damage of major facilities (주요 시설물 피해를 고려한 복합재난 피해 예측 시스템 방안 연구)

  • Lee, Byung-Jin;Lee, Byung-Hoon;Oh, Seung-Hee;Lee, Yong-Tea;Kim, Kyung-Seok
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.18-25
    • /
    • 2017
  • Recently, disasters have become bigger and more complex, and the economic damage has increased due to the increase of urbanization and the concentration of infrastructure. These large complex disasters occur simultaneously in the second and third disasters due to the first single disaster, but the existing disaster management system in Korea is less adaptable because it is divided into natural disasters and social disasters. The cause of the complex disaster is the rapid urbanization of the residential environment caused by the change of the industrial structure, and the threat factors are various and unpredictable in the living environment. Natural disasters are becoming larger and more complex due to climate change due to global warming. Unlike the past, natural disasters are likely to develop into multiple disasters such as urban paralysis. Therefore, this paper considers natural disasters and social disasters in a comprehensive concept in order to overcome limitations of disaster management by existing single factors and manage disasters effectively and rationally. It is expected that it will play a big role in protecting the lives and property of the people through the establishment of a preemptive disaster management framework.

Photosynthetic Responses of Populus alba×glandulosa to Elevated CO2 Concentration and Air Temperature (CO2 농도 및 기온 상승에 대한 현사시나무의 광합성 반응)

  • Lee, Solji;Oh, Chang-Young;Han, Sim-Hee;Kim, Ki Woo;Kim, Pan-Gi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.1
    • /
    • pp.22-28
    • /
    • 2014
  • This study was conducted to investigate the photosynthetic characters of Populus alba${\times}$glandulosa cuttings in response to elevated $CO_2$ concentration and air temperature for selecting tree species adaptive to climate change. The cuttings were grown in environment controlled growth chambers with two combinations of $CO_2$ concentration and air temperature conditions: (i) $22^{\circ}C$ + $CO_2$ 380 ${\mu}mol$ $mol^{-1}$ (control) and (ii) $27^{\circ}C$ + $CO_2$ 770 ${\mu}mol$ $mol^{-1}$ (elevated) for almost three months. The cuttings under the elevated treatment showed reduced tree height and photosynthetic pigment contents such as chlorophyll and carotenoid. In particular, the elevated treatment resulted in a marked reduction in the chlorophyll a closely associated with $CO_2$ fixative reaction system. Different levels of reduction in photosynthetic characters were found under the elevated treatment. A decrease was noted in photochemical reaction system parameters: net apparent quantum yield (7%) and photosynthetic electron transport rate (14%). Moreover, a significant reduction was obvious in $CO_2$ fixative reaction system parameters: carboxylation efficiency (52%) and ribulose-1,5-bisphosphate(RuBP) regeneration rate (24%). These results suggest that the low level of photosynthetic capacity may be attributed to the decreased $CO_2$ fixative reaction system rather than photochemical reaction system.

Studies on Selection of Freezing Resistant Clones of Cryptomeria japonica (삼(杉)나무 내한성(耐寒性) 품종(品種) 선발(選拔)에 관한 연구(硏究))

  • Hong, Sung Gak;Cho, Tae Hwan;Hwang, Jeung
    • Journal of Korean Society of Forest Science
    • /
    • v.51 no.1
    • /
    • pp.22-35
    • /
    • 1981
  • This study was designed to know difference in degree of dehardening and rehardening respectively by artificial high and low temperature treatments among different clonal seedlings and seedlings from different seed sources of Cryptomeria japonica which have been grown under the cold areas in Japan and Korea. High temperature treatment was done with 15 to $20^{\circ}C$ under 100% relative humidity for one to nine days and low temperature treatment was carried with $-7^{\circ}C$ for one to three days. Occasionaly, high temperature treatment was combined and followed by low temperature treatment. The ability of stem section to delay dehardening by high temperature treatment and/or to hasten rehardening by low temperature treatment was used as an indicator of adaptability under extreme temperature fluctuation in nature. Clones and seedlings from different seed sources which showed greater freezing resistance than others after artificial high and/or low temperature treatments were selected over two to three time periods: early winter, mid winter and early spring in 1977 to 1980. These were Seoul #7, and #9, Namboo #3, and #4, Sung-Kang #11, Chung-Sam #8 and Huek-Suk #9. These selected seedlings might have survival advantage to withstand early and late frost damage, especially the critical frost damage of the basal stem, since it was known to be induced by lowering freezing resistance of the basal part when exposed to the high temperature near the ground during the day. Large variation in freezing resistance and degree of dehardening and rehardening was found among clonal or seed sources and among individuals within a seed source, but was not related to the difference in climatic conditions where the parent trees was selected. These indicated the possibility of future breeding work for more cold resistant family of Cryptomeria japonica.

  • PDF