A study of a system for predicting damages of complex disasters considering the damage of major facilities

주요 시설물 피해를 고려한 복합재난 피해 예측 시스템 방안 연구

  • 이병진 (충북대학교 전파통신공학) ;
  • 이병훈 (충북대학교 전파통신공학) ;
  • 오승희 (한국전자통신연구원(ETRI) 방송미디어연구소) ;
  • 이용태 (한국전자통신연구원(ETRI) 방송미디어연구소) ;
  • 김경석 (충북대학교 정보통신공학부)
  • Received : 2017.10.26
  • Accepted : 2017.11.02
  • Published : 2017.12.31

Abstract

Recently, disasters have become bigger and more complex, and the economic damage has increased due to the increase of urbanization and the concentration of infrastructure. These large complex disasters occur simultaneously in the second and third disasters due to the first single disaster, but the existing disaster management system in Korea is less adaptable because it is divided into natural disasters and social disasters. The cause of the complex disaster is the rapid urbanization of the residential environment caused by the change of the industrial structure, and the threat factors are various and unpredictable in the living environment. Natural disasters are becoming larger and more complex due to climate change due to global warming. Unlike the past, natural disasters are likely to develop into multiple disasters such as urban paralysis. Therefore, this paper considers natural disasters and social disasters in a comprehensive concept in order to overcome limitations of disaster management by existing single factors and manage disasters effectively and rationally. It is expected that it will play a big role in protecting the lives and property of the people through the establishment of a preemptive disaster management framework.

최근 재난이 대형화 및 복합화되고 있어 도시화 증가 및 기반시설 밀집화로 인해 경제적 피해가 심화되었다. 이러한 대형복합재난은 1차 단일 재난으로 인해 2차, 3차 재난이 동시다발적 연쇄적으로 발생하고 있으나 우리나라의 기존 재난관리 체계는 자연 사회재난간 이분법적 구분으로 적응력이 떨어진다. 복합재난의 원인은 산업구조의 변화에 기인한 거주환경의 급속한 도시화 진전으로 생활 환경속에서 위협요인이 다양하고, 예측불허의 양상을 보이고 있다. 지구온난화에 따른 기후변화로 인하여 자연재난 발생양상은 대형화 복합화되고 있으며, 과거와 달리 자연재난도 도시기능 마비와 같은 복합재난으로 발전할 가능성이 크다. 따라서, 본 논문은 기존 단일 요인에 의한 재난관리의 한계성을 극복하고 재난을 효과적이고 합리적으로 관리하기 위해 포괄적인 개념에서 자연재난과 사회 재난을 통합한 복합재난 시스템 모델링을 제시한다. 이를 통해 선제적 재난관리체계 기반 구축을 통해 국민의 생명과 재산을 보호하는데 큰 역할을 수행할 수 있을 것으로 예상된다.

Keywords

References

  1. Comfort , L. K. (1998), 'Designing Policy for Action: The Emergency Management System ', L. K. Comfort (ed.). Managing Disaster. Dorham , North Carolina: Duke University Press
  2. 소방방재청, 2010 재난연감, 소방방재청. 2011
  3. 이재은, 김겸훈, "재난관리 정보공유와 NDMS의 실태분석 및 개선방안", 한국정책과학학회보, pp. 191-214, Vol.9 No.4, 2005
  4. 국토교통부 국토지리정보원, 국가 수문기상 재난안전 공동 활용시스템, 2013
  5. 국가수자원관리종합정보시스템, http://www.wamis.go.kr
  6. 국토해양부 한강홍수통제소, 치수대책 평가시스템 구축 연구(4차) 최종보고서.2012.3
  7. 산림청, 산사태정보시스템, 2014
  8. Coletti, A., Howe, P. D., Yarnal, B., & Wood, N. J. (2013). A support system for assessing local vulnerability to weather and climate. Natural hazards, 65(1), 999-1008. https://doi.org/10.1007/s11069-012-0366-3
  9. Kousky, C., L. Shabman, and B. Lingle. 2016. NFIP Premiums for Single Famliy Residential Properties: Today and Tomorrow. Policy brief 16-10. Washington, DC: Resources for the Future.
  10. Federal Emergency Management Agency and National Institute of Building Sciences (2006a) Multi-hazard loss estimation methodology, HAZUS-MH MR2 user manual, prepared for the Federal Emergency Management Agency, Washington DC, United States.
  11. Data Fusion For Flood Analysis and Decision Support," European Research Consortium for Information and Mathematics, ANFAS, http://www.ercim.org/ANFAS, Retrived September 20, 2011.
  12. Nordregio/ESPON 2.2.1 (2006) Territorial effects of Structural Funds. Final Report of ESPON Project 2.2.1
  13. Aziz, A. 2014: Rainfall-Runoff Modeling of the Trans-Boundary Kabul River Basin Using Integrated Flood Analysis System (IFAS), Pakistan Journal of Meteorology, Vol. 10, Issue 20: Jan, 2014.
  14. Radar rain gauge course for practical engineers, Foundation of River & Basin Integrated Communications, Japan: http://www.river.or.jp/reda/index.html
  15. C. A. Blain, R. H. Preller, and A. P. Rivera. 2002. Tidal prediction using the Advanced Circulation Model (ADCIRC) and a relocatable PC-based system, Oceanography, 15 (1), 77-87. https://doi.org/10.5670/oceanog.2002.38
  16. Saito, K., T. Fujita, Y. Yamada, J. Ishida, Y. Kumagai, K. Aranami, S. Ohmori, R. Nagasawa, S. Kumagai, C. Muroi, T. Kato, H. Eito, and Y. Yamazaki, 2006: The Operational JMA Nonhydrostatic Mesoscale Model. Mon. Wea. Rev., 134, 1266-1298. https://doi.org/10.1175/MWR3120.1
  17. 2015년 재해연보, 국민안전처
  18. Brunner, G. W. (2002). HEC-RAS River Analysis System: User's Manual. US Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center.
  19. Friedman-Hill, E., T. Plantenga, and H. Ammerlahn "Simulation Templates in the SUMMIT System." Proceedings of the Spring Simulation Interoperability Workshop 2010. Simulation Interoperability Standards Organization(SISO). 2010.
  20. DTRA, 2001: The Hazard Prediction and Assessment Capability (HPAC) user's guide, version 4.0.3. Prepared for the Defense Threat Reduction Agency by Science Applications International Corporation
  21. Regal Decision Systems. (2014, November 28). REGAL Evac [Online]. Available: http://www.regaldecision.com