본 연구는 중 고등학교 교사 50명에 대하여 기하 문제의 논증기하적 또는 해석기하적 문제해결 전략이 학생들의 평가에 어떤 영향을 미치는가를 조사한 것이다. 중학교에서 고등학교로 진학하면 도형의 문제에 대한 해석기하적인 문제해결 능력은 교육과정 상 대단히 중요하게 가르쳐야 할 내용이다. 유클리드 기하에 바탕을 둔 논증기하의 지식은 좌표평면의 도형을 방정식으로 나타내고 연구하는 해석기하의 기본이다. 그럼에도 불구하고 많은 학생들은 논증기하적 문제해결을 선호하는 반면 해석기하적 문제해결은 어려워한다. 또한 논증기하적 문제 형태에는 논증기하적 문제해결 전략, 해석기하적 문제 형태에는 해석기하적 문제해결 전략을 구사하는 경향을 보인다. 본 연구는 중 고등학교 교사들의 기하 문제에 대한 내용 지식이 학생 평가에 미치는 영향에 초점이 맞추어져 있다.
In this study, we research distinctive features of geometry problem solving of middle school students whose mathematical achievement levels are distinguished by National Assessment of Educational Achievement. We classified 9 students into 3 groups according to their level : advanced level, proficient level, basic level. They solved an atypical geometry problem while all their problem solving stages were observed and then analyzed in aspect of development of geometrical concepts and access to the route of problem solving. As those analyses, we gave some suggestions of teaching on mathematics as students' achievement level.
In this paper we studied problem solving related with geometric interpretation of algebraic expressions. We analyzed algebraic expressions, related these expressions with geometric interpretation. By using geometric interpretation we could find new approaches to solving mathematical problems. We suggested new problem solving methods related with geometric interpretation of algebraic expressions.
Proceedings of the Korean Operations and Management Science Society Conference
/
1994.04a
/
pp.159-165
/
1994
실세계에서 발생하는 많은 문제들은 주어진 제약조건들을 만족하는 범위내에서 해를 찾는 제약만족문제(CSP)의 개념으로 설명될 수 있으며, 이러한 문제들의 해결을 위해 인공지능 및 OR 분야에서 활발한 연구가 계속 되어왔다. 본 연구는 대표적 논리언어인 prolog에서 유한이산 도메인 및 수치 제약조건의 해결을 위한 제약해결기에 대한 연구이다. 본 연구에서 구현된 제약해결기에서는 포워드체킹(FC)을 사용하여 조합적 문제를 효과적인 도메인 여과를 통해 탐색공간 및 탐색시간을 축소시키며, 또한 최적화 문제의 해결에 있어서도 그 문제에 주어진 목적함수와 FC의 장점을 조화 시킴으로써 최적해를 더욱 효과적으로 발견한다.
This paper investigate Descartes' , which is significant in the history of mathematics, from standpoint of problem-solving. Descartes has clarified the general principle of problem-solving. What is more important, he has found his own new method to solve confronting problem. It is said that those great achievements have exercised profound influence over following generation. Accordingly this article analyze Descartes' work focusing his method.
수학 학습의 목표를 수학적 사고력의 신장이라는 측면에서 보았을 때 이를 위하여 문제에 대한 다양한 해법을 찾는 활동은 중요하다. 문제에 대한 다양한 접근은 문제해결의 전략을 학습시키고 사고의 유연성을 길러줄 수 있는 방법이 된다. 문제에 대한 다양한 해법을 찾는 과정에서 이미 알고 있는 지식이 어떻게 응용되는지를 알게 된다. 특히 기하 문제에 대한 다양한 접근은 문제해결의 전략을 학습시킬 수 있는 좋은 예가 된다. 본고에서는 문제해결을 통한 수학적 일반성을 발견하기 위한 방법으로서 문제에 대한 다양한 해법을 연역과 귀납에 의하여 일반화하는 과정을 탐색하고자 한다. 특히 수학 문제에 대한 다양한 해법을 찾는 것은 문제해결 전략으로서 뿐만 아니라 창의적 사고의 신장 측면에서 시사점을 던져준다.
The dynamic geometric environment plays a positive role in solving students' geometric problems. Students can infer invariance in change through dragging, and help solve geometric problems through the analysis method. In this study, the continuous spectrum of the dynamic geometric environment can be used to solve problems of students. The continuous spectrum can be used in the 'Understand the problem' of Polya(1957)'s problem solving stage. Visually representation using continuous spectrum allows students to immediately understand the problem. The continuous spectrum can be used in the 'Devise a plan' stage. Students can define a function and explore changes visually in function values in a continuous range through continuous spectrum. Students can guess the solution of the optimization problem based on the results of their visual exploration, guess common properties through exploration activities on solutions optimized in dynamic geometries, and establish problem solving strategies based on this hypothesis. The continuous spectrum can be used in the 'Review/Extend' stage. Students can check whether their solution is equal to the solution in question through a continuous spectrum. Through this, students can look back on their thinking process. In addition, the continuous spectrum can help students guess and justify the generalized nature of a given problem. Continuous spectrum are likely to help students problem solving, so it is necessary to apply and analysis of educational effects using continuous spectrum in students' geometric learning.
In the elementary mathematics, geometric education emphasize spatial sense and understandings of figures through development of intuitions in space. Especially space visualization is one of the factors which try conclusion with geometric problem solving. But studies about space visualization are limited to middle school geometric education, studies in elementary level haven't been done until now. Namely, discussions about elementary students' space visualization process and methods in plane or space figures is deficient in relation to geometric problem solving. This paper examines these aspects, especially in relation to plane and space problem solving in elementary levels. First, we investigate visualization methods for plane problem solving and space problem solving respectively, and analyse in diagram form how progress understanding of figures and visualization process. Next, we derive constituent factor on visualization process, and make a check errors which represented by difficulties in visualization process. Through these analysis, this paper aims at deriving an influence of visualization on geometric problem solving in the elementary mathematics.
Journal of the Korean Operations Research and Management Science Society
/
v.1
no.1
/
pp.51-54
/
1976
1964년에 Duffin과 Zener는 기하적 계획법(Geometric Programming)이란 새로운 비선형 계획법(Nonlinaer Programming)을 개발하였다. 이 새로운 기하적 계획법은 수주한 형태의 비선형 계획문제에만 적용이 가능하지만 반면 적용이 가능한 문제에 관해서는 매우 강력한 계획법중에 하나가 된다. 지금부터 기하적 계획법의 원리와 그에 따르는 문제해결 예제를 들면서 적용 가능한 비선형 문제를 해결하겠다.
Proceedings of the Korean Information Science Society Conference
/
1998.10c
/
pp.18-20
/
1998
본 논문은 EBL 기반의 제어지식형 계획기에서 다양한 목표확장 방법을 사용하여 MEA의 불완전한 계획생성을 해결하는 새로운 방법을 제안한다. 계획기의 문제 공간을 탐색하는 방법 중 하나인 MEA는 현재상태와 목표상태의 차이를 줄이기 위하여 연산자를 선택한 후에, 연산자의 조건절을 현재상태가 만족하는지의 여부에 따라서 조건절의 부목표화를 결정한다. 그러나 이러한 목표확장 방법은 현재상태에서 만족된 부목표에 대한 목표확장을 하지않음으로써 문제공간 탐색에서 제한된 범위만을 탐색하므로 목표를 만족하는 최적의 계획을 생성할 수 없으며, 또한 문제를 해결하는 계획이 있음에도 불구하고 탐색범위의 제한으로 인해 계획을 생성하지 못하는 경우도 발생한다. 이와 같이 현재 상태에서 만족되어 목표확장을 하지 않은 부목표를 Anycase Subgoal이라 한다. 본 논문에서 제안하는 목표확장 방법은 ELB기반의 제어지식형 계획기를 Anycase Subgoal을 위하여 확장하는 방법으로 서, 초기의 문제공간 탐색에서 사용된 목표확장 방법에서 문제를 해결하지 못할 경우 탐색공간을 확장하여 문제를 해결하고, 문제에 적합한 목표확장 방법을 제어지식형 규칙으로 학습하여 유사한 문제에 대하여 효율적으로 계획을 생성한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.