• Title/Summary/Keyword: 기하정합

Search Result 191, Processing Time 0.027 seconds

Comparison of Co-registration Algorithms for TOPS SAR Image (TOPS 모드 SAR 자료의 정합기법 비교분석)

  • Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1143-1153
    • /
    • 2018
  • For TOPS InSAR processing, high-precision image co-registration is required. We propose an image co-registration method suitable for the TOPS mode by comparing the performance of cross correlation method, the geometric co-registration and the enhanced spectral diversity (ESD) matching algorithm based on the spectral diversity (SD) on the Sentinel-1 TOPS mode image. Using 23 pairs of interferometric pairs generated from 25 Sentinel-1 TOPS images, we applied the cross correlation (CC), geometric correction with only orbit information (GC1), geometric correction combined with iterative cross-correlation (GC2, GC3, GC4), and ESD iteration (ESD_GC, ESD_1, ESD_2). The mean of co-registration errors in azimuth direction by cross correlation and geometric matching are 0.0041 pixels and 0.0016 pixels, respectively. Although the ESD method shows the most accurate result with the error of less than 0.0005 pixels, the error of geometric co-registration is reduced to 0.001 pixels by repetition through additional cross correlation matching between the reference and resampled slave image. The ESD method is not applicable when the coherence of the burst overlap areas is low. Therefore, the geometric co-registration method through iterative processing is a suitable alternative for time series analysis using multiple SAR data or generating interferogram with long time intervals.

Automated Geometric Correction of Geostationary Weather Satellite Images (정지궤도 기상위성의 자동기하보정)

  • Kim, Hyun-Suk;Hur, Dong-Seok;Rhee, Soo-Ahm;Kim, Tae-Jung
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.70-75
    • /
    • 2007
  • 2008년 12월에 우리나라 최초의 통신해양기상위성(Communications, Oceanography and Meteorology Satellite, COMS)이 발사될 예정이다. 통신해양기상위성의 영상데이터의 기하보정을 위하여 다음과 같은 연구를 수행하였다. 기상위성은 정지궤도상에 위치하여 전지구적인 영상을 얻는다. 영상의 전지구적인 해안선은 구름 등으로 가려져서 명확한 정보를 제공할 수 없게 된다. 구름 등으로 방해되지 않는 명확한 해안선 정보를 얻기 위하여 구름 추출을 한다. 실시간으로 기상정보를 얻는 기상위성의 특성상 정합에 전체 영상을 사용하면 수행시간이 다소 소요된다. 정합시 전체 영상에서 정합을 위한 후보점 추출을 위하여 GSHHS(Global Self-consistent Hierarchical High-resolution Shoreline)의 해안선 데이터베이스를 사용하여 211 개 의 랜드마크 칩들을 구축하였다. 이때 구축된 랜드마크 칩은 실험에 사용한 GOES-9의 위치 동경 155도를 반영하여 구축하였다. 전체 영상에서 구축된 랜드마크 칩들의 위치를 중심으로 구름추출을 수행한다. 전체 211 개의 후보점 중 구름이 제거된 나머지 후보점에 대하여 정합을 수행한다. 랜드마크 칩과 위성영상 간의 정합 중 참정합과 오정합이 존재하는데 자동으로 오정합을 검출하기 위하여 강인추정기법 (RANSAC, Random Sample Consensus)을 사용한다. 이때 자동으로 판별되어 오정합이 제거된 정합결과로 최종적인 기하보정을 수행한다. 기하보정을 위한 센서모델은 GOES-9 위성의 센서특정을 고려하여 개발되었다. 정합 및 RANSAC결과로 얻어진 기준점으로 정밀 센서모델을 수립하여 기하보정을 실시하였다. 이때 일련의 수행과정을 통신해양기상위성의 실시간 처리요구사항에 맞도록 속도를 최적화하여 진행되도록 개발하였다.

  • PDF

Automated Geometric Correction of Geostationary Weather Satellite Images (정지궤도 기상위성의 자동기하보정)

  • Kim, Hyun-Suk;Lee, Tae-Yoon;Hur, Dong-Seok;Rhee, Soo-Ahm;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.4
    • /
    • pp.297-309
    • /
    • 2007
  • The first Korean geostationary weather satellite, Communications, Oceanography and Meteorology Satellite (COMS) will be launched in 2008. The ground station for COMS needs to perform geometric correction to improve accuracy of satellite image data and to broadcast geometrically corrected images to users within 30 minutes after image acquisition. For such a requirement, we developed automated and fast geometric correction techniques. For this, we generated control points automatically by matching images against coastline data and by applying a robust estimation called RANSAC. We used GSHHS (Global Self-consistent Hierarchical High-resolution Shoreline) shoreline database to construct 211 landmark chips. We detected clouds within the images and applied matching to cloud-free sub images. When matching visible channels, we selected sub images located in day-time. We tested the algorithm with GOES-9 images. Control points were generated by matching channel 1 and channel 2 images of GOES against the 211 landmark chips. The RANSAC correctly removed outliers from being selected as control points. The accuracy of sensor models established using the automated control points were in the range of $1{\sim}2$ pixels. Geometric correction was performed and the performance was visually inspected by projecting coastline onto the geometrically corrected images. The total processing time for matching, RANSAC and geometric correction was around 4 minutes.

Extraction of the Disparity Using the Epipolar Geometry (에피폴라 기하학을 이용한 변이영상의 추출)

  • 구본기;최이배;정연구
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1998.11a
    • /
    • pp.21-24
    • /
    • 1998
  • 논문은 상대적인 3차원 정보를 추출하기 위하여 스테레오 정합 알고리듬에 에피폴라 기하학을 적용하였다. 카메라로부터 입력받은 영상에서 추출된 특징 점으로부터 에피폴라 기하학 구조를 구성한다. 이렇게 구한 에피폴라 기하학 정보는 스테레오 영상에서의 정합 점들 간의 기하학적인 상관관계를 구성하고 조밀한 변이영상을 추출한다 실험결과를 통하여 제안된 알고리듬이 실제 공간상에서 대상물체를 실감 있게 표현함을 알 수 있다.

  • PDF

Adjustment of Exterior Orientation Parameters Geometric Registration of Aerial Images and LIDAR Data (항공영상과 라이다데이터의 기하학적 정합을 위한 외부표정요소의 조정)

  • Hong, Ju-Seok;Lee, Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.5
    • /
    • pp.585-597
    • /
    • 2009
  • This research aims to develop a registration method to remove the geometric inconsistency between aerial images and LIDAR data acquired from an airborne multi-sensor system. The proposed method mainly includes registration primitives extraction, correspondence establishment, and EOP(Exterior Orientation Parameters) adjustment. As the registration primitives, we extracts planar patches and intersection edges from the LIDAR data and object points and linking edges from the aerial images. The extracted primitives are then categorized into horizontal and vertical ones; and their correspondences are established. These correspondent pairs are incorporated as stochastic constraints into the bundle block adjustment, which finally precisely adjusts the exterior orientation parameters of the images. According to the experimental results from the application of the proposed method to real data, we found that the attitude parameters of EOPs were meaningfully adjusted and the geometric inconsistency of the primitives used for the adjustment is reduced from 2 m to 2 cm before and after the registration. Hence, the results of this research can contribute to data fusion for the high quality 3D spatial information.

Registration for 3D Object Reconstruction from Multiple Range Images Considering Texture (텍스처를 고려한 다중 레인지 이미지의 3차원 형상 복원을 위한 정합)

  • 최가나;김창헌
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.644-646
    • /
    • 1999
  • 본 논문은 한 물체에 대해 스캔 위치 정보가 없는 여러 시점의 레인지 이미지들로부터 3차원 형상 복원을 위한 정합 알고리즘을 제안한다. 기존의 정합 방법은 스캔 위치 정보와 기하학 정보를 이용하여 레인지 이미지들을 정렬시킨 반면, 본 논문의 정합 방법은 스캔 위치와는 독립적으로 수행되며 기하학 정보와 텍스쳐 정보를 함께 이용하여 정렬시킨다. 그러므로 텍스쳐가 있는 여러 장의 레인지 이미지들로부터 3차원 형상을 보다 정확하고 효율적으로 복원할 수 있다.

  • PDF

Feature Point Matching using Epipolar Geometry (에피폴라 기하를 이용한 특징점 정합)

  • 권혁민;한준희;정연구
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.446-448
    • /
    • 1998
  • 본 논문은 두 장의 스테레오 영상으로부터 자동적으로 특징점 정합을 수행하도록 하는 한 방법을 제안한다. Correlation기반의 특징점 정합을 빠르고 안정적으로 수행하며 이 때에 발생하는 애매성 문제에 대한 해결방법을 제시한다. 또한, LMedS방법을 사용하여 outlier를 효과적으로 제거시키고 에피폴라 기하를 이용하여 정합의 성능을 향상시킨다. 실내, 실외 영상에 대한 다양한 실험결과는 본 논문에서 제안하는 방법이 빠르고 효율적임을 보여준다.

  • PDF

Integrated Automatic Pre-Processing for Change Detection Based on SURF Algorithm and Mask Filter (변화탐지를 위한 SURF 알고리즘과 마스크필터 기반 통합 자동 전처리)

  • Kim, Taeheon;Lee, Won Hee;Yeom, Junho;Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.209-219
    • /
    • 2019
  • Satellite imagery occurs geometric and radiometric errors due to external environmental factors at the acquired time, which in turn causes false-alarm in change detection. These errors should be eliminated by geometric and radiometric corrections. In this study, we propose a methodology that automatically and simultaneously performs geometric and radiometric corrections by using the SURF (Speeded-Up Robust Feature) algorithm and the mask filter. The MPs (Matching Points), which show invariant properties between multi-temporal imagery, extracted through the SURF algorithm are used for automatic geometric correction. Using the properties of the extracted MPs, PIFs (Pseudo Invariant Features) used for relative radiometric correction are selected. Subsequently, secondary PIFs are extracted by generated mask filters around the selected PIFs. After performing automatic using the extracted MPs, we could confirm that geometric and radiometric errors are eliminated as the result of performing the relative radiometric correction using PIFs in geo-rectified images.

Resampling Method to Improve Performance of Point Cloud Registration (포인트 클라우드 정합 성능 향상을 위한 리샘플링 방법)

  • Kim, Jongwook;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.187-189
    • /
    • 2020
  • 본 논문에서는 포인트 클라우드 정합 성능 향상을 위해 기하적 복잡도가 낮은 정점들의 영향을 최소화하는 포인트 클라우드 리샘플링 방법을 제안한다. 3 차원 특징 기술자(3D feature descriptor)를 기반으로 하는 포인트 클라우드 정합은 정점 법선 벡터의 변화량을 특징으로 사용한다. 따라서 강건한 특징은 대부분 정점 법선 벡터의 변화량이 큰 영역에서 추출된다. 반면에 정점 법선 벡터의 변화량이 거의 없는 평면 영역은 정합 수행 시에 이상점(outlier)으로 작용할 수 있으므로 해당 정점들이 정합 과정에 미치는 영향을 최소화해야 한다. 제안하는 방법은 모델 포인트 클라우드의 기하적 복잡도를 고려한 리샘플링을 통해 전체 정점의 수 대비 복잡도가 낮은 정점들의 비율을 낮추어 이상점이 정합 과정에 미치는 영향을 최소화하고 정합 성능을 향상시켰다.

  • PDF

Online Multi-view Range Image Registration using Geometric and Photometric Feature Tracking (3차원 기하정보 및 특징점 추적을 이용한 다시점 거리영상의 온라인 정합)

  • Baek, Jae-Won;Moon, Jae-Kyoung;Park, Soon-Yong
    • The KIPS Transactions:PartB
    • /
    • v.14B no.7
    • /
    • pp.493-502
    • /
    • 2007
  • An on-line registration technique is presented to register multi-view range images for the 3D reconstruction of real objects. Using a range camera, we first acquire range images and photometric images continuously. In the range images, we divide object and background regions using a predefined threshold value. For the coarse registration of the range images, the centroid of the images are used. After refining the registration of range images using a projection-based technique, we use a modified KLT(Kanade-Lucas-Tomasi) tracker to match photometric features in the object images. Using the modified KLT tracker, we can track image features fast and accurately. If a range image fails to register, we acquire new range images and try to register them continuously until the registration process resumes. After enough range images are registered, they are integrated into a 3D model in offline step. Experimental results and error analysis show that the proposed method can be used to reconstruct 3D model very fast and accurately.