Proceedings of the Korean Society of Broadcast Engineers Conference (한국방송∙미디어공학회:학술대회논문집)
- 2020.11a
- /
- Pages.187-189
- /
- 2020
Resampling Method to Improve Performance of Point Cloud Registration
포인트 클라우드 정합 성능 향상을 위한 리샘플링 방법
- Kim, Jongwook (Hanyang University) ;
- Park, Jong-Il (Hanyang University)
- Published : 2020.11.28
Abstract
본 논문에서는 포인트 클라우드 정합 성능 향상을 위해 기하적 복잡도가 낮은 정점들의 영향을 최소화하는 포인트 클라우드 리샘플링 방법을 제안한다. 3 차원 특징 기술자(3D feature descriptor)를 기반으로 하는 포인트 클라우드 정합은 정점 법선 벡터의 변화량을 특징으로 사용한다. 따라서 강건한 특징은 대부분 정점 법선 벡터의 변화량이 큰 영역에서 추출된다. 반면에 정점 법선 벡터의 변화량이 거의 없는 평면 영역은 정합 수행 시에 이상점(outlier)으로 작용할 수 있으므로 해당 정점들이 정합 과정에 미치는 영향을 최소화해야 한다. 제안하는 방법은 모델 포인트 클라우드의 기하적 복잡도를 고려한 리샘플링을 통해 전체 정점의 수 대비 복잡도가 낮은 정점들의 비율을 낮추어 이상점이 정합 과정에 미치는 영향을 최소화하고 정합 성능을 향상시켰다.
Keywords