• Title/Summary/Keyword: 기하보정

Search Result 479, Processing Time 0.03 seconds

Enhancement of Spatial Resolution to Local Area for High Resolution Satellite Imagery (고해상도 위성영상을 위한 국소영역 공간해상도 향상 기법)

  • Kang, Ji-Yun;Kim, Ihn-Cheol;Kim, Jea-Hee;Park, Jong Won
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.137-143
    • /
    • 2013
  • The high resolution satellite images are used in many fields such as weather observation, remote sensing, military facilities monitoring, cultural properties protection etc. Although satellite images are obtained in same satellite imaging system, the satellite images are degraded depending on the condition of hardware(optical device, satellite operation altitude, image sensor, etc.). Due to the fact that changing the hardware of satellite imaging system is impossible for resolution enhancement of these degraded satellite after launching a satellite, therefore the method of resolution enhancement with satellite images is necessary. In this paper the resolution is enhances by using a Super Resolution(SR) algorithm. The SR algorithm is an algorithm to enhance the resolution of an image by uniting many low resolution images, so an output image has higher resolution than using other interpolation methods. But It is difficult to obtain many images of the same area. Therefore, to solve this problem, we applied SR after by applying the affine and projection transform. As a results, we found that the images applied SR after affine and projection transform have higher resolution than the images only applied SR.

Finite Element Vibration Analysis of Laminated Composite Folded Structures With a Channel Section using a High-order Shear deformation Plate Theory (고차전단변형 판이론을 이용한 채널단면을 갖는 복합적층 절판 구조물의 유한요소 진동 해석)

  • 유용민;장석윤;이상열
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.1
    • /
    • pp.21-30
    • /
    • 2004
  • This study deals with free vibrations of laminated composite structures with a channel section using finite element method. In this paper, the mixed finite element method using Lagrangian and Hermite interpolation functions is adopted and a high-order plate theory is used to analyze laminated composite non-prismatic folded plates with a channel section more accurately for free vibration. The theory accounts for parabolic distribution of the transverse shear stress and requires no shear correction factors supposed in the first-order plate theory. An 32×32 matrix is assembled to transform the system element matrices from the local to global coordinates using a coordinate transformation matrix, in which an eighth drilling degree of freedom (DOF) per node is appended to the existing 7-DOF system. The results in this study are compared with those of available literatures for the conventional and first-order plate theory. Sample studies are carried out for various layup configurations and length-thickness ratio, and geometric shapes of plates. The significance of the high-order plate theory in analyzing complex composite structures with a channel section is enunciated in this paper.

Interaction Augmented Reality System using a Hand Motion (손동작을 이용한 상호작용 증강현실 시스템)

  • Choi, Kwang-Woon;Jung, Da-Un;Lee, Suk-Han;Choi, Jong-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.4
    • /
    • pp.425-438
    • /
    • 2012
  • In this paper, We propose Augmented Reality (AR) System for the interaction between user's hand motion and virtual object motion based on computer vision. The previous AR system provides inconvenience to user because the users have to control the marker and the sensor like a tracker. We solved the problem through hand motion and provide the convenience to the user. Also the motion of virtual object using a physical phenomenon gives a reality. The proposed system obtains geometrical information by the marker and hand. The system environments like virtual space of moving virtual ball and bricks are made by using the geometrical information and user's hand motion is obtained from the hand's information with extracted feature point through the taping hand. And it registers a virtual plane stably by getting movement of the feature points. The movement of the virtual ball basically is parabolic motion with a parabolic equation. When the collision occurs either the planes or the bricks, we show movement of the virtual ball with ball position and normal vector of plane and the ball position is faulted. So we showed corrected ball position through experiment. and we proved that this system can replaced the marker system to compare to jitter of augmented virtual object and progress speed with it.

Precise Rectification of Misaligned Stereo Images for 3D Image Generation (입체영상 제작을 위한 비정렬 스테레오 영상의 정밀편위수정)

  • Kim, Jae-In;Kim, Tae-Jung
    • Journal of Broadcast Engineering
    • /
    • v.17 no.2
    • /
    • pp.411-421
    • /
    • 2012
  • The stagnant growth in 3D market due to 3D movie contents shortage is encouraging development of techniques for production cost reduction. Elimination of vertical disparity generated during image acquisition requires heaviest time and effort in the whole stereoscopic film-making process. This matter is directly related to competitiveness in the market and is being dealt with as a very important task. The removal of vertical disparity, i.e. image rectification has been treated for a long time in the photogrammetry field. While computer vision methods are focused on fast processing and automation, photogrammetry methods on accuracy and precision. However, photogrammetric approaches have not been tried for the 3D film-making. In this paper, proposed is a photogrammetry-based rectification algorithm that enable to eliminate the vertical disparity precisely by reconstruction of geometric relationship at the time of shooting. Evaluation of proposed algorithm was carried out by comparing the performance with two existing computer vision algorithms. The epipolar constraint satisfaction, epipolar line accuracy and vertical disparity of result images were tested. As a result, the proposed algorithm showed excellent performance than the other algorithms in term of accuracy and precision, and also revealed robustness about position error of tie-points.

Study on the improvement of prediction model for the railway environmental noise using ISO 9613-2 (ISO 9613-2를 이용한 철도 환경소음 예측 모델 개선에 관한 연구)

  • Jang, Seungho;Koh, Hyo-In;Hong, Jiyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.1
    • /
    • pp.11-26
    • /
    • 2017
  • Approximate empirical equations obtained by measuring overall noise levels at different distances have been used to evaluate environmental influence of the railway noise though the accurate prediction of noise levels is important. In this paper, a noise prediction model considering the frequency characteristics of noise sources and propagation was suggested to improve the accuracy of noise prediction. The railway noise source was assorted into track, wheel, traction and aerodynamic components and they were characterized with the source strength and speed coefficient at each octave-band frequency. Correction terms for the acoustic roughness and the track/bridge condition were introduced. The sound attenuation from a source to a receiver was calculated taking account of the geometrical divergence, atmospheric absorption, ground effect, diffraction at obstacles and directivity of source by applying ISO 9613-2. For obtaining the source strength and speed coefficients, the results of rolling noise model, numerical analysis and measurements of pass-by noise were analyzed. We compared the predicted and measured noise levels in various vehicles and tracks, and verified the accuracy of the present model. It is found that the present model gives less error than the conventional one, so that it can be applied to make the accurate prediction of railway noise effect and establish its countermeasures efficiently.

Automated Algorithm for Super Resolution(SR) using Satellite Images (위성영상을 이용한 Super Resolution(SR)을 위한 자동화 알고리즘)

  • Lee, S-Ra-El;Ko, Kyung-Sik;Park, Jong-Won
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.209-216
    • /
    • 2018
  • High-resolution satellite imagery is used in diverse fields such as meteorological observation, topography observation, remote sensing (RS), military facility monitoring and protection of cultural heritage. In satellite imagery, low-resolution imagery can take place depending on the conditions of hardware (e.g., optical system, satellite operation altitude, image sensor, etc.) even though the images were obtained from the same satellite imaging system. Once a satellite is launched, the adjustment of the imaging system cannot be done to improve the resolution of the degraded images. Therefore, there should be a way to improve resolution, using the satellite imagery. In this study, a super resolution (SR) algorithm was adopted to improve resolution, using such low-resolution satellite imagery. The SR algorithm is an algorithm which enhances image resolution by matching multiple low-resolution images. In satellite imagery, however, it is difficult to get several images on the same region. To take care of this problem, this study performed the SR algorithm by calibrating geometric changes on images after applying automatic extraction of feature points and projection transform. As a result, a clear edge was found just like the SR results in which feature points were manually obtained.

Review on the Three-Dimensional Magnetotelluric Modeling (MT 법의 3차원 모델링 개관)

  • Kim, Hee-Joon;Nam, Myung-Jin;Song, Yoon-Ho;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.2
    • /
    • pp.148-154
    • /
    • 2004
  • This article reviews the development of three-dimensional (3-D) magnetotelluric (MT) modeling. The 3-D modeling of electromagnetic fields is essential in understanding the physics of MT soundings, and in implementing an inversion method to reconstruct a 3-D resistivity image. Although various numerical schemes have been developed over the last two decades, practical methods have been quite limited. However, the recent rapid improvement in computer speed and memory, as well as the advance in iterative solution algorithms for a large system of equations, makes it possible to model the MT responses of complex 3-D structures, which have been very difficult to simulate before. The use of staggered grids in finite difference method has become popular, conserving a magnetic flux and an electric current and allowing for realistic discontinuous fields. The convergence of numerical solutions has been greatly accelerated by adopting Krylov subspace methods, proper preconditioning techniques, and static divergence corrections. The vector finite-element method using edge elements is also free from the discontinuity problem, and seems a natural choice for modeling complex structures including irregular topography because its flexibility allows one to capture full geometric complexity.

Characteristics of 23 MV Photon Beam from a Mevatron KD 8067 Dual Energy Linear Accelerator (Mevatron KD 8067 선형가속기의 23 MV 광자선의 특성)

  • Kim, Ok-Bae;Choi, Tae-Jin;Kim, Young-Hoon
    • Radiation Oncology Journal
    • /
    • v.8 no.1
    • /
    • pp.115-124
    • /
    • 1990
  • The characteristics of 23 MV photon beam have been presented with respect to clinical parameters of central axis depth dose, tissue-maxi mum ratios, scatter-maximum ratios, surface dose and scatter correction factors. The nominal accelerating potential was found to be $18.5\pm0.5$ MV on the central axis. The half-value layer (HVL) of this photon beam was measured with narrow beam geometry from central axis, and it has been showed the thickness of $24.5\;g/cm^2$. The tissue-maximum ratio values have been determined from measured percentage depth dose data. In our experimental dosimetry, the surface dose of maximum showed only $9.6\%$ of maximum dose at $10\times10\;cm^2$, 100 cm SSD, without blocking tray in. The TMR'S of $0\times0$ field size have been determined to get average $2.3\%$ uncertainties from three different methodis; are zero effective attenuation coefficient, non-ilnear least square fit of TMR's data and effective linear attenuation coefficient from the HVL of 23 MV photon beams of dual energy linear accelerator.

  • PDF

Influence of Specimen Geometries on the Compressive Strength of Lightweight Aggregate Concrete (경량골재 콘크리트의 압축강도에 대한 시험체 기하학적 특성의 영향)

  • Sim, Jae-Il;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.333-340
    • /
    • 2012
  • The current study prepared 9 laboratorial concrete mixes and 3 ready-mixed concrete batches to examine the size and shape effects in compression failure of lightweight aggregate concrete (LWC). The concrete mixes were classified into three groups: normal-weight, all-lightweight and sand-lightweight concrete groups. For each concrete mix, the aspect ratio of circular or square specimens was 1.0 and 2.0. The lateral dimension of specimens varied between 50 and 150 mm for each laboratorial concrete mix, whereas it ranged from 50 to 400 mm with an incremental variation of 50 mm for each ready-mixed concrete batch. Test observations revealed that the crack propagation and width of the localized failure zone developed in lightweight concrete specimens were considerably different than those of normal-weight concrete (NWC). In LWC specimens, the cracks mainly passed through the coarse aggregate particles and the crack distribution performance was very poor. As a result, a stronger size effect was developed in LWC than in NWC. Especially, this trend was more notable in specimens with aspect ratio of 2.0 than in specimens with that of 1.0. The prediction model derived by Kim et al. overestimated the size effect of LWC when lateral dimension of specimen is above 150 mm. On the other hand, the modification factors specified in ASTM and CEB-FIP provisions, which are used to compensate for the shape effect of specimen on compressive strength, were still conservative in LWC.

Development and Evaluation of Quality Assurance Worksheet for the Radiation Treatment Planning System (방사선치료계획 시스템의 정도관리 절차서 개발 및 유용성 평가)

  • Cho Kwang Hwan;Choi Jinho;Shin Dong Oh;Kwon Soo Il;Choi Doo Ho;Kim Yong Ho;Lee Sang Hoon
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.186-191
    • /
    • 2004
  • The periodic Quality Assurance (QA) of each radiation treatment related equipments is important one, but quality assurance of the radiation treatment planning system (RTPS) is still not sufficient rather than other related equipments in clinics. Therefore, this study will present and test the periodic QA program to compare, evaluation the efficiency of the treatment planning systems. This QA program is divided to terms for the input, output devices and dosimetric data and categorized to the weekly, monthly, yearly and non-periodically with respect to the job time, frequency of error, priority of importance. CT images of the water equivalent solid phantom with a heterogeneity condition are input into the RTPS to proceed the test. The actual measurement data are obtained by using the ion chamber for the 6 MV, 10 MV photon beam, then compared a calculation data with a measurement data to evaluate the accuracy of the RTPS. Most of results for the accuracy of geometry and beam data are agreed within the error criteria which is recommended from the various advanced country and related societies. This result can be applied to the periodic QA program to improve the treatment outcome as a proper model in Korea and used to evaluate the accuracy of the RTPS.

  • PDF