• Title/Summary/Keyword: 기초탐구과정

Search Result 235, Processing Time 0.028 seconds

Comparative Study on Mathematics Curriculum and Contents of Early Childhood Education in Korea and the United States based on Common Core State Standards(CCSS) and New Jersey Preschool Standards (한국과 미국의 유아 수학교육과정 내용 비교 연구: Common Core State Standards 및 뉴저지 주 Preschool Standards를 중심으로)

  • Yu, Sun-young
    • Korean Journal of Comparative Education
    • /
    • v.28 no.3
    • /
    • pp.333-354
    • /
    • 2018
  • The study aimed to compare and analyze Nuri curriculum and contents for mathematics in Korea and the Common Core State Standards(CCSS) and New Jersey Preschool Standards for mathematics in the United States. With the results as basis, this study intended to provide suggestions and directions for improving Nuri curriculum of mathematics for young children. For the goal of this study, educational goals, categories of contents, and specific contents were reviewed. First, results of this study indicated that Nuri curriculum for mathematics provides comprehensive educational goals that promote problem-solving ability in everyday contexts with composing mathematical knowledge. On the contrary, CCSS and Preschool Standards provide specific educational goals that focus on children's mathematical skills and concepts. Second, the contents of both countries' curriculum concentrate on 'counting and cardinality', 'measurement', and 'spatial and geometric sense.' There are 5 categories of CCSS, 4 categories of Preschool Standards based on CCSS and one category of Nuri curriculum for mathematics. Third, there are the differences between the two countries' curriculum in continuity from kindergarten to first grade and description method for curriculum.

Analysis of the Characters' Role Presenting Elementary School Science Textbook: Targeting the 2009 Revised Science 4th-Grade Textbook (초등학교 과학 교과서에 제시된 캐릭터 삽화의 역할 분석: 2009개정 과학과 4학년 교과서를 대상으로)

  • Sung, SeungMin;Chae, HeeIn;Lim, Heejun
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.1
    • /
    • pp.167-175
    • /
    • 2016
  • This study aims to find out the meaning of characters used in science textbooks by analyzing the roles of the characters on the 2009 revised science textbooks and the extracted sentences and see if there are indications referable to compiling future science textbooks by finding out where the characters are efficiently used and where supplement is needed. Target textbooks among those developed for the 2009 revised elementary school science textbooks are the first and second semester of the 4th-grade. Methods used include analysis on the roles of character-containing questions using character role analysis whose illustration analysis frame is more supplemented/adjusted than those used in the foregoing studies, analysis on character-containing questions using the existing analysis frame, analysis/survey on good cases and cases needing supplement through consultation with a science education expert, two teachers, etc. The result shows that among types of character roles, motivation and material provision are more used than experiment guide, experiment, and observation results. Result of analyzing in-textbook characters by field shows that life sphere is more used than free exploration, energy, material, and earth. Result of analyzing question types shows the order of expanding, anticipatory, transferable and personal questions and there were no reminiscent and evaluative questions. Based on the result of this study, indications on how to use in-science textbook characters more efficiently and developmentally are needed.

Adults' perception of mathematics: A narrative analysis of their experiences in and out of school (수학에 대한 성인들의 인식: 학교 안팎에서의 수학적 경험에 대한 내러티브 탐구)

  • Cho, Eun Young;Kim, Rae Young
    • The Mathematical Education
    • /
    • v.61 no.3
    • /
    • pp.477-497
    • /
    • 2022
  • The rapidly changing world calls for reform in mathematics education from lifelong learning perspectives. This study examines adults' perception of mathematics by reflecting on their experiences of mathematics in and out of school in order to understand what the current needs of adults are. With the two questions: "what experiences do participants have during their learning of mathematics in schools?" and "how do they perceive mathematics in their current life?", we analyzed the semi-structured interviews with 10 adults who have different sociocultural backgrounds using narrative inquiry methodology. As a result, participants tended to accept school mathematics as simply a technique for solving computational problems, and when they had not known the usefulness of mathematical knowledge, they experienced frustration with mathematics in the process of learning mathematics. After formal education, participants recognized mathematics as the basic computation skill inherent in everyday life, the furniture of their mind, and the ability to efficiently express, think, and judge various situations and solve problems. Results show that adults internalized school education to clearly understand the role of mathematics in their lives, and they were using mathematics efficiently in their lives. Accordingly, there was a need to see school education and adult education on a continuum, and the need to conceptualize the mathematical abilities required for adults as mathematical literacy.

Change and Characteristics of Interactions in a Homogeneous Group on Scientific Inquiry Experiments (동질모둠이 수행한 과학탐구실험에서 실험 진행에 따른 상호작용의 변화와 특성)

  • Seong, Suk-Kyoung;Choi, Byung-Soon
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.1
    • /
    • pp.75-88
    • /
    • 2008
  • The purpose of this study was to understand the factors affecting interactions as well as the students' learning process in small group activities. For this purpose, the changes and characteristics of students' interactions in scientific inquiry experiments were analyzed. This study focused on 2 homogeneous small groups of eighth graders. Students were involved in 13 inquiry experiments for one year and students' interactions in each experiments were observed and recorded using video/audio and the data recorded were transcribed. The analysis of data was based on the method of making a note by looking on and listening to the data repeatedly. Changes in the interactions of the two homogeneous groups differ remarkably. In small group A, owing to the conflicts of students' emotions, learning through social interactions became to be impossible. On the other hand, the interactions in small group B became more active. It seems that this changes are affected largely by the existence of peers who are able to mediate different opinions or feelings among group members. In general, middle school students were poor at receiving peers' opinion, cared a lot about writing reports. The less able students tended to be placed at a disadvantageous position in experiment lessons emphasizing social interactions. Four factors that affected the change of interactions were identified: Is the aim of experiments the understanding or completion of report? Is there any attitude towards peers' suggestions? Is there a disposition to care about peers? Is there any peer to mediate on peers' opinions or feelings? Educational implications of the progression of activities emphasizing interactions and the organization of grouping were drawn.

The Critical Thinking of Philosophy as a Creative Method of Science: Neurophilosophical Explication (창의적 과학방법으로서 철학의 비판적 사고: 신경철학적 해명)

  • Park, Jeyoun
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.1
    • /
    • pp.144-160
    • /
    • 2013
  • This study is a proposal, which is the trial to explicate, in neurology, on how critical thinking as a creative method of sciences functions. The creative methods of sciences, even at present, are mostly the hypothetical insistences concerning with the logical processes of researches suggested from the philosophers of science; Popper, Kuhn, Hempel, or Lakatos. These insistences do excavate what process or approach can be scoped out of scientists' creativity. I call the tendency or approach of the researches, "Process Approach of Creativity (PAC)". From my view point, any PAC trial does not concern with how creative theories can actually be invented. On the other hand, this study is focused on the philosophical thinking abilities of scientists who invented new great theories. They mostly had some experiences to study philosophy while studying their science fields, thus had critical thinking abilities on their studies. From my point of view, critical thinking in philosophy raised questions as to their fundamental and basic (old) concepts and principles, and thus gave them new creative theories. I will try to explain this from the point of neurophilosophy. From the perspectives coming from "the state space theory of representation" of Paul & Patricia Churchland, the pioneers of neurophilosphy, the "creative theories" are the networks of topographic maps giving new comprehensive explanations and predictions. From these perspectives, I presuppose that the attitude of critical questioning revises the old networks of maps with back-propagation or feedback, and thus, is the generative power of searching new networks of maps. From the presupposition, I can say, it is important that scientists reflect on the basic premises in their academic branches for issuing out extraordinary creativity. The critical attitude of philosophy can make scientists construct the maps of new conceptual scheme by shaking the maps of the old basic premises. From this context, I am able to propose "Critical Thinking Approach of Creativity (CTAC)".

Appropriation of Human Resources into Human Assets and Its Typology (인적자원의 인적자산화 과정과 자산유형)

  • Jeong, Kioh
    • Journal of Service Research and Studies
    • /
    • v.9 no.2
    • /
    • pp.77-88
    • /
    • 2019
  • Appropriation means the process of transforming resources to property. John Locke earlier investigated the appropriation process of natural resources into the land property, which grounded the jurisprudential base of the private ownership of the land. In the same way human resources are transformed into the human assets. Appropriation process, very rarely studied so far, in this case of human property is the focus of this paper. The appropriation of intangible property is by far easier than the appropriation of tangible property. Learning is a process of embodiment, which naturally mean the process of appropriation. For the material resources which exist out of human body, appropriation necessary need special philosophical and institutional justification. In the process appropriation for intangibles, investigator found, appropriator and learner either can be same, or can be differentiated. In the former case substantial human assets are created while in the latter relational human assets are built. After the discussion of appropriation process, Investigator proceeds to the problem of visualizing the invisibles. Evaluation and assessment issue were discussed in this perspective. Qualification system is particularly noted as a system to regulate substantial human assets including their issuing and registration. The work done in this paper would contribute in understanding the law of education and the law of qualification.

An Analysis on the GIS-related Test Items of High School Korean Geography: Focusing on the Nationwide Tests for the 12th Graders in the 7th National Education Curriculum (고등학교 한국지리 GIS 관련 평가 문항 분석: 7차 교육과정 고등학교 3학년 전국 규모 평가를 대상으로)

  • Cho, Daeheon
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.3
    • /
    • pp.472-487
    • /
    • 2014
  • This study aims to analyze the characteristics of GIS-related test items of high school Korean Geography in the 7th National Education Curriculum, and to discuss some issues and challenges. First, we developed a framework for analyzing test items based on the literature review and the content analysis on the textbooks, which categorizes test items in terms of content elements and activity elements. Then, we examined test items of nation-wide tests including CSAT(College Scholastic Ability Test) carried out 2004-2012 and analyzed the percentage of correct answers as well. According to the results, there was a significant predominance of particular test item categories, and the percentage of correct answers of GIS-related items was slightly higher than whole average but it depended on the test item categories. Finally, we discussed the implications of this analysis to the tests as well as the teaching-learning process in the classroom, and suggested improvement directions such as integration of GIS with other contents, reinforcement of the inquiry-based test items, maintaining moderate difficulty.

  • PDF

Effects of Mathematical Justification on Problem Solving and Communication (수학적 정당화가 문제 해결과 의사소통에 미치는 영향)

  • Jeong, In Su
    • Education of Primary School Mathematics
    • /
    • v.16 no.3
    • /
    • pp.267-283
    • /
    • 2013
  • Mathematical justification is the process through which one's claim is validated to be true based on proper and trustworthy data. But it serves as a catalyst to facilitate mathematical discussions and communicative interactions among students in mathematics classrooms. This study is designed to investigate the effects of mathematical justification on students' problem-solving and communicative processes occurred in a mathematics classroom. In order to fulfill the purpose of this study, mathematical problem-solving classes were conducted. Mathematical justification processes and communicative interactions recorded in problem understanding activity, individual student inquiry, small and whole group discussions are analyzed. Based on the analysis outcomes, the students who participated in mathematical justification activities are more likely to find out various problem-solving strategies, to develop efficient communicative skills, and to use effective representations. In addition, mathematical justification can be used as an evaluation method to test a student's mathematical understanding as well as a teaching method to help develop constructive social interactions and positive classroom atmosphere among students. The results of this study would contribute to strengthening a body of research studying the importance of teaching students mathematical justification in mathematics classrooms.

컴퓨터 소프트웨어를 활용한 테셀레이션 교수 학습 자료 개발 및 활용 방안

  • Im, Hae-Gyeong;Park, Eun-Yeong
    • Communications of Mathematical Education
    • /
    • v.13 no.2
    • /
    • pp.563-589
    • /
    • 2002
  • 고학년으로 갈수록 지필 환경에만 머무르는 현실 속에서 생활 및 예술 작품 등에서 수학적 원리와 개념을 발견하도록 하는 테셀레이션 수업은 학생들의 흥미와 호기심을 유발하고 수학의 아름다움을 느끼게 하는 것 이상으로 기하학적 사고의 기초를 학습하는데 도움을 줄 수 있다. 이에 본 연구는 4학년까지 적용되고 있는 7차 교육과정을 중심으로 새롭게 등장하고 있는 테셀레이션에 대한 이해 및 교수 학습 자료가 체계적으로 정비되어 있지 못한 현실적인 문제의 해결 방안으로서 테셀레이션을 활용한 수학 학습의 내용을 분석하여 교사들에게는 테셀레이션의 이해 및 교수 학습 자료로서 , 학생들에게는 수학의 기하적 개념들을 쉽고 재미있게 학습할 수 있는 학습도구로서 활용할 수 있도록 하는 것을 목적으로 테셀레이션을 구현할 수 있는 컴퓨터 소프트웨어를 활용하여 테셀레이션 교수 학습 자료를 개발하였고 이를 위해 다음과 같은 연구 내용을 설정하였다. 가. 테셀레이션의 정의와 예 그리고 종류를 알아보고 테셀레이션 속의 수학적 개념을 활용방법과 함께 제시한다. 나. 제7차 초등 수학 교육과정 중 도형 영역과 규칙성과 함수 영역을 중심으로 테셀레이션을 적용할 수 있는 내용영역을 분석하고 컴퓨터 소프트웨어를 활용한 테셀레이션 자료를 제시한다. 다. 제작된 테셀레이션 교수 학습 자료의 효과적 활용을 위한 활용 방안을 탐색한다. 라. 제작된 테셀레이션 교수 학습 자료의 활용 효과를 알아보기 위해 적용 실험을 하고 이에 대한 학생들의 반응을 분석하여 학습의 효과를 밝힌다. 제작된 테셀레이션 교수 학습 자료의 적용 실험을 위하여 광주대성초등학교 6학년 한 반을 선정하였고 약 4주에 걸쳐 컴퓨터 소프트웨어를 활용한 테셀레이션 교수 학습 자료를 투입하여 4번의 활동수업을 실시하였다. 수업 후 작성된 학습지와 소감문 및 연구자에 의해 관찰된 수업내용을 바탕으로 다음과 같은 연구 결과를 얻을 수 있었다. 첫째, 제7차 초등 수학 교육과정 중 도형 영역과 규칙성과 함수 영역을 중심으로 컴퓨터 소프트웨어를 활용한 테셀레이션 자료를 제시한 결과 지필적 환경에서 제한적이었던 탐구하고 조작해보는 활동을 할 수 있는 역동적인 수학 실험실 환경이 제공됨으로써 도구적 이해가 아닌 관계적 이해를 하는 것을 확인할 수 있었다. 수학적 개념을 암기하는 것에서 벗어나 자연스런 조작을 통해 학생들이 개념을 이해하고 탐구하는 과정 속에서 학생들은 수학을 공부한다기 보다는 수학 속에서 재미있게 놀이한다는 생각을 가지고 수업에 참여하였고 배우는 즐거움을 알고 자신감을 가지며 더 나아가 창의적인 생각을 하도록 하는 기회를 줄 수 있었다. 둘째, 테셀레이션은 우리 생활 속에서 쉽게 발견할 수 있는 것으로 수학이 단순히 책에서만 한정되지 않고 다양한 분야 즉 디자인, 생활 속에서의 벽지문양과 포장지, 예술작품 등에 활용되고 있음을 체험함으로써 수학이 실생활에 광범위하게 활용되고 있음을 알게 하였다. 역으로 생활 속에서의 테셀레이션을 통해 수학적 개념을 찾는 과정을 통해 수학이 아름다우면서도 실용적이라는 생각을 심어줄 수 있었다. 셋째, 테셀매니아, GSP, 캐브리, 거북기하 등 평소 수업에서는 활용도가 적은 컴퓨터 소프트웨어를 활용함으로써 컴퓨터 소프트웨어 자체에서 오는 호기심뿐만이 아니라 직접 조작하여 테셀레이션 작품과 개념을 익히고 새로운 작품과 학습을 해 내는 과정을 통해 자신감과 성취감 등에 있어 큰 변화가 있음을 발견할 수 있었다. 컴퓨터 기능이 미숙한 학생의 경우 처음에는 당황해 하고 어려워하는 부분도 있었으나 조작할 시간적 여유를 주고 교사와 우수한 학생들이 도우미로서 역할을 잘해내어 나중에는 큰 어려움 없이 마칠 수 있었다. 테셀레이션이라는 용어가 아직은 생소한 현장에서 교수 학습 자료가 부족하고 그에 따른 이해도 부족한 현실 속에서 컴퓨터 소프트웨어를 활용한 테셀레이션 교수 학습 자료가 교수 학습 현장에 투입되어 유용하게 사용될 수 있는지 그 가능성을 조사한 것을 목적으로 한 본 연구의 결과로서 테셀레이션이라는 주제는 도형 영역과 규칙성과 함수 영역에서 평면 도형의 각과 모양 등의 성질을 탐구하게 하고, 대칭변환의 개념을 효율적으로 학습하게 할 수 있고, 반복되는 모양에서 규칙성을 발견하고 부분과 전체를 파악하여 패턴을 인지할 수 있게 하며 제작하고 분석하는 과정을 통해 여러 가지 수학적 개념과 수학적 창의성, 수학적인 아름다움을 느끼게 할 수 있음을 발견할 수 있었다. 또한 테셀레이션은 수학적 개념은 물론 수학과 미술, 수학과 일상 생활과의 연결성을 논의하고 확인하는 데 흥미로운 주제가 될 수 있다. 초등학교 교육과정에서 새롭게 도입되고 있는 테셀레이션을 활용하여 지도하기 위한 교수 학습 자료로 유용하게 사용될 수 있고 앞으로는 테셀레이션과 관련된 내용이 직접적으로 교육과정 내에서 다루어지고, 또한 테셀레이션을 적용한 수업이 학생들의 기하학적 사고 및 수학적 태도에 미치는 영향과 관련한 연구가 뒤따라야 할 것으로 본다.

  • PDF

Analysis of the Cognitive Level of Meta-modeling Knowledge Components of Science Gifted Students Through Modeling Practice (모델링 실천을 통한 과학 영재학생들의 메타모델링 지식 구성요소별 인식수준 분석)

  • Kihyang, Kim;Seoung-Hey, Paik
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.1
    • /
    • pp.42-53
    • /
    • 2023
  • The purpose of this study is to obtain basic data for constructing a modeling practice program integrated with meta-modeling knowledge by analyzing the cognition level for each meta-modeling knowledge components through modeling practice in the context of the chemistry discipline content. A chemistry teacher conducted inquiry-based modeling practice including anomalous phenomena for 16 students in the second year of a science gifted school, and in order to analyze the cognition level for each of the three meta-modeling knowledge components such as model variability, model multiplicity, and modeling process, the inquiry notes recorded by the students and observation note recorded by the researcher were used for analysis. The recognition level was classified from 0 to 3 levels. As a result of the analysis, it was found that the cognition level of the modeling process was the highest and the cognition level of the multiplicity of the model was the lowest. The cause of the low recognitive level of model variability is closely related to students' perception of conceptual models as objective facts. The cause of the low cognitive level of model multiplicity has to do with the belief that there can only be one correct model for a given phenomenon. Students elaborated conceptual models using symbolic models such as chemical symbols, but lacked recognition of the importance of data interpretation affecting the entire modeling process. It is necessary to introduce preliminary activities that can explicitly guide the nature of the model, and guide the importance of data interpretation through specific examples. Training to consider and verify the acceptability of the proposed model from a different point of view than mine should be done through a modeling practice program.