• 제목/요약/키워드: 기체 조성 변화

검색결과 170건 처리시간 1.694초

Analysis of Changing Pattern of Noxious Gas Levels with Malodorous Substance Concentrations in Individual Stage of Pig Pens for 24 hrs to Improve Piggery Environment (돈사환경 개선을 위한 생육단계별 돈사내 악취물질 농도 및 유해가스의 1일 변화추세 분석)

  • You, Won-Gyun;Kim, Cho-Long;Lee, Myung-Gyu;Kim, Dong-Kyun
    • Journal of Animal Environmental Science
    • /
    • 제18권1호
    • /
    • pp.25-34
    • /
    • 2012
  • Noxious gases with malodorous substance concentrations in each stages of pig buildings were determined at a typical 400sow-scale farm to improve piggery environment. Using IAQ-300 and pDR-1000AN, continuous records for the concentration of $NH_3$, CO, $CO_2$, $NO_2$, $SO_2$, $H_2S$, $O_2$, and along with temperature, humidity, dust concentrates from individual pig pens were collected to analyze every 6 hours' condition of indoor environment for 24 hours' period. In most pig houses, the air quality at noon was good, while at night (00:00~06:00), air composition became noxious in all buildings. The order of buildings' air quality for 24 hrs was pregnant > farrowing > nursery > growing > finishing. The cause of air quality differences was presumed to be the differences of stocking density, defecating amount and the length of exposure time of slurry in indoors. In conclusion, well-designed building structure, proper control of stocking density, quick removal of excreta from pig pens and continuous ventilation are prerequisites to improve pig housing environment.

Perforation Adjustment of Unit Package for 'Fuji' Apples during Short-term Cold Storage and Export Simulation ('후지' 사과의 단기 저온저장 및 모의수출 과정에서 소포장의 천공도 조절 효과)

  • Kim, Su-Jeong;Park, Youn-Moon;Yoon, Tae-Myung
    • Horticultural Science & Technology
    • /
    • 제32권2호
    • /
    • pp.184-192
    • /
    • 2014
  • Various types of unit packaging methods were applied for 'Fuji' apples during short-term cold storage and export simulation. Gas tightness of the package was controlled stepwise in the successive two-year experiments using different perforation treatments (none, punch hole, or pinhole) and sealing methods (tie v s. heat seal). Risk of tight packaging and effectiveness of macroperforation on weight loss and quality maintenance were analyzed as related to changes in gas concentration inside the packages. Immediately after harvest, each 5 apple units were packaged in $40{\mu}m$ polypropylene (PP) film bags, stored 4 weeks at $0^{\circ}C$, and then put on the shelf for one week at ambient temperature in the preliminary experiment, In the main experiment, export process was imposed after storage simulating 2 week refrigerated container shipment at $0^{\circ}C$ plus one week local marketing at ambient temperature. Non-perforated film packaging with relatively high gas tightness induced flesh browning caused by carbon dioxide accumulation regardless of the sealing methods. Among perforated film packaging, in contrast, atmospheric modification was partly established only in the pinhole treatment and flesh browning symptom was not observed in all the treatments. Even the punch hole perforated film packaging without gas tightness effectively reduced the weight loss, whereas had slight benefits for quality maintenance. Reduced perforation using pinhole treatment seemed to improve sensory texture, while effects on physicochemical quality were insignificant. Overall results suggest the need of more minute perforation treatments on the packaging film to ensure modified atmosphere effects on quality maintenance.

Comparison of Environmental Control Characteristics of High-barrier Films for Sealed Packaging of Cultural Heritage Objects (문화재 밀폐 포장용 고차단성 필름의 보존환경 제어 특성 비교)

  • Jeong, Jaeung;Park, Insik;Huh, Ilkwon
    • Conservation Science in Museum
    • /
    • 제16권
    • /
    • pp.96-113
    • /
    • 2015
  • High-barrier films are used to store cultural heritage objects in a safe environment sealed from oxygen and moisture. One of the high-barrier films use populary E manufactured by Japanese company M from the 1990's. However, this product has stayed in wide use, due to dearth of research on related subjects - including studies comparing it with other similar products-, in spite of the fact that high price information about its characteristics and environmental conditions is largely lacking. This study examines the characteristics of a number of high-barrier films with the goal to establish environmental standards for safer conservation of cultural heritage objects. E by the Japanese manufacturer M is compared with four other films; an electronics packaging films by a Korean firm, a film specially produced for the purposes of experiment in this study and a zipper bag-type film. Experiments were performed to compare the properties and gas blocking ability of the films by looking at their cross-section and measuring the thickness, tensile strength, elongation, absorbance of UV and visible light, yellowing and the permeability for oxygen and vapor. Based on these experiments, there are observed changes under different environmental conditions and depending on the length of use through temparature and humidification reproucing test. The results showed that while the high-barrier film by the Korean manufacturer was suitable for use as a packaging material for cultural heritage objects, the zipper bag-type film (P) was ill-adapted for this purpose. Based on the experiments reproducing the real-world environment, the length of useful life was also determined for each.

Studies on the Utilization of Persimmons -(Part 6) Investigation of the Optimum Thickness of Film Bag for Polyethylene Film Storage of Fuyu- (감의 이용(利用)에 관(關)한 연구 -(제6보(第六報)) 부유시의 Polyethylene Film 저장(貯藏)에 따른 최적(最適) Film 두께의 조사(調査)-)

  • Sohn, T.H.;Choi, J.U.;Seog, H.M.;Cho, R.K.;Seo, O.S.;Kim, S.T.;Ha, Y.S.;Kang, J.H.
    • Korean Journal of Food Science and Technology
    • /
    • 제10권1호
    • /
    • pp.78-82
    • /
    • 1978
  • In a series of studies on the utilization of persimmons, the purpose of this experiment was to examine the optimum thickness of film using different number of persimmons per film bag. 'Fuyu', persimmon variety was used in this investigation. The results obtained were as follows: The optimum thickness of the film bag was 0.08mm, 0.06mm, and 0.04mm for the bags packed with 3, 10 and 50 persimnons, respectively. The changes in the ratio of firmness, loss of fresh weight, titrable acidity and percentage of sugar contents were minimal in these three optimum combinations than the others. These results could be explained by the balanced optimum gas concentration, $CO_2$ 5-10% and $O_2$ 5%, in those three optimum combination. Therefore, it was suggested that the different thickness of film bag needs a particular number of fruits packed per bag for the long term storage in persimmons.

  • PDF

Effect of Packaging Conditions on Keeping Quality of Fresh Jujube (포장조건에 따른 생대추의 저장성)

  • Lee, Dong-Sun;An, Duck-Soon
    • Korean Journal of Food Science and Technology
    • /
    • 제30권2호
    • /
    • pp.461-467
    • /
    • 1998
  • Two hundred grams of fresh jujubes at whitish green maturity was packaged in the film bags of different gas permeabilities and stored at 0 and $5^{\circ}C$. Through the storage package atmosphere and jujube quality were monitored. Package of $30\;{\mu}m\;CPP$ film resulted in anaerobic conditions of $O_2$ content below 1% and $CO_2$ content above 15%, and caused off-flavor at both temperatures within 4 weeks. Package of $60\;{\mu}m\;LDPE$ film also showed potential risk of anaerobic condition development within 5 weeks, because of high $CO_2$ and/or low $O_2$ concentration at 0 and $5^{\circ}C$. Microperforated film packages could preserve quality of jujubes for 10 and 7 weeks at 0 and $5^{\circ}C$, respectively, which were significantly longer than shelf lives for perforated air pack and hermetically sealed packages.

  • PDF

Structure and Magnetic Properties of Fe-N Films Deposited by Dc Magnetron Sputtering (DC Magnetron Sputtering 방법으로 증착한 Fe-N 박막의 구조와 자기적 성질)

  • 이종화;이원종
    • Journal of the Korean Magnetics Society
    • /
    • 제3권2호
    • /
    • pp.87-93
    • /
    • 1993
  • Iron nitride (Fe-N) magnetic thin films were deposited using a DC magnetron sputtering system. Microstructures and magnetic properties were examined as a function of deposition power and nitrogen gas input ratio. The nitrogen content in the film was found to be the major factor determining the microstructure and the magnetic properties. The films deposited at low nitrogen input ratios have an $\alpha$-Fe structure of which the lattice is expanded due to the nitrogen atoms incorporated at the interstitial sites. As the nitrogen content in the film increases, the degree of lat-tice expansion increases and the value of saturation magnetization decreases linearly. The films with a high degree of lattice expansion give very low values of coercivity, which is attributed to the disturbance of colunmar growth and the decrease of surface roughness. Further increase in the nitrogen input ratio causes the phase transfonnation from $\alpha$-Fe to $Fe_{2-3}N$, resulting in the marked reduction in the saturation magnetization. The phase transformation occurs when, regardless of deposition conditions, the nitrogen content reaches at 15 at.% and the lattice is expanded by 5%.

  • PDF

Gas Impermeability Enhancement of EFDM/Crosslinked IIR Blends (Crosslinked IIR의 블렌드비에 따른 EPDM의 내기체투과특성 향상)

  • Kim, Hyun-Jun;Jung, Il-Hyun;Hong, In-Kwon;Park, Jae-Woo
    • Elastomers and Composites
    • /
    • 제33권3호
    • /
    • pp.193-200
    • /
    • 1998
  • It is well known that EPDM(ethylene propylene diene monomer) rubber has inherently excellent resistance to the weathering, ozone, heat, cold and moisture, whereas crosslinked IIR (isobutylene isoprene divlnyl benzene terpolymer) shows proper resistance to the water and gas permeation. Various characteristics of EPDM blend with crosslinked IIR such as curing characteristics, mechanical properties, dispersion of minor component and gas impermeability were explored. The optimum curing time $(t_{90})$ examined with peroxide was decreased by adding small amount of crosslinked IIR to the EPDM rubber. Mechanical properties of blends such as tensile strength, hardness and elongation at break were enhanced by increasing EPDM content. These results might be explained with the affinity of carbon black to the EPDM rubber. On the other hand, the physical properties were not changed significantly after aging, and the increase of crosslinked IIR fraction caused the decrease of compression set to small rate. EPDM rubber shows different behavior with crosslinked IIR in oxygen permeability. By adding 30wt.% crosslinked IIR to the EPDM rubber, the resistance to the oxygen permeation was improved up to three times than that of pure EPDM rubber. Conclusively, EPDM blend containing 30wt.% crosslinked IIR might be commercially applied to the o-ring and electric parts because of its proper resistance to the weathering, ozone and oxygen permeability.

  • PDF

The Trend and forecast of world Aircraft industry (세계 항공기산업 동향과 전망)

  • Chang, Tae-Jin
    • Current Industrial and Technological Trends in Aerospace
    • /
    • 제6권1호
    • /
    • pp.14-24
    • /
    • 2008
  • After 2001, the world aircraft industry grows consistently with world's economic recovery. The environmental changes after 9.11, including the market decent and revival, rise in oil price, and the environmental problems, make the aircraft industry change gradually. The increasing demand of point-to-point flight needs over 200 seat class large jets and changes the main model of regional jet over 100 seat class. And the needs of various flight schedule raises the demand of business jet and VLJ. The competition between airliners including the main streams, the regionals and the low prices goes harder and it needs more efficient airplanes which reduce the cost. In the military side, still the development of 5th generation fighter is proceeding and it diffuses to the more countries. Before its popularization, the 4th generation fighter is chosen for good alternatives of it. And there are some changes in the military demand after the war against terrorism. The army needs more unmanned reconnaissance and they want new aircraft which gives more accessibility.

  • PDF

Wood Protection : New Technologies for the Next Century (목재보존(木材保存) : 다음 세기(世紀)를 위(爲)한 새로운 보존기술(保存技術))

  • Barnes, H. Mike;Kim, Gyu-Hyeok
    • Journal of the Korean Wood Science and Technology
    • /
    • 제21권4호
    • /
    • pp.7-28
    • /
    • 1993
  • 본 총설에서는 새로운 방부제와 방부처리 기술의 현재 발전 동향을 요약, 보고한다. 많은 새로운 방부제들이 약제의 독성 측면에서 환경적인 충격을 완화시킬 수 있는 잠재성을 가지고 있지만, 방부제로서 상업화되기 위해서는 이러한 약제들은 약제의 효능과 환경 안전성 간의 몇 가지 상호 조정 관계가 반드시 해결되어야 한다. Ammoniacal copper 계통의 방부제들이 지접부 사용에 적합한 새로운 수용성 방부제들의 주종을 이루고 있으며, 기존의 유용성 방부제들을 물에 용해한 emulsion 형태도 지접부 사용의 가능성을 보여 준다. 새로운 유용성 방부제 중에서 copper naphthenate, substituted isothiazolones, chlorothalonil, oxine copper가 지접부 사용을 위한 최상의 후보로 평가되고 있다. 유용성 방부제를 emulsion 형태로 사용하는 것은 유용성 방부제에 사용되는 석유 계통 용제의 소비를 감소시키기 때문에 중대한 의미를 가진다. 방부제들의 효능을 개선하고 강화시키기 위해 사용되는 첨가제들도 본 총설에서 거론된다. 재질개량을 위해 사용되는 비통상적인 방법(nonconventional system)들도 생물학적 열화 및 기상열화에 대한 저항성을 부여하여 목재의 사용수명을 증가시킨다. 전처리 공정에서 침상 자상처리(Needle incising)와 레이져 자상처리는 난주입 수종의 처리도를 개선시킬 수 있는 잠재성을 가지고 있다. 처리기술에 있어서 여러 가지 혁신적인 변화들은 기존의 처리 schedule을 조성함에 그 기본을 두고 있다. 난주입 수종의 처리도 개선은 pulsation법이나 고압 약제 분사법 (high energy liquid jets) 같은 고압을 적용하는 처리법에 의해서 달성된다. 미래의 처리공장들은 방부제를 기체상태로 또는 물질의 임계점 이상에서 방부제를 처리할 수도 있다. 이러한 새로운 접근은 외관이 깨끗하고, 처리도도 매우 양호한 처리재를 생산하는데 일조하리라 기대한다. 환경에 대한 대중적인 지대한 관심은 앞으로 목재 방부산업에 큰 영향을 미칠 것으로 보인다. 결과적으로 방부제의 처리목재내 가속 정착에 관한 연구에 상당한 노력이 투자될 것이다. 처리 후 가공에 관한 다른 주요한 연구는 방부제 처리 후 실시되는 재건조가 처리재의 역학적 성질에 미치는 영향에 대한 것이다.

  • PDF

SiO2 식각 시 CF4+Ar 혼합비에 따른 플라즈마 내의 화학종 분석

  • Hong, Gwang-Gi;Yang, Won-Gyun;Ju, Jeong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.238-239
    • /
    • 2011
  • 최근 반도체 산업은 더 높은 성능의 회로 제작을 통해 초고집적화를 추구하고 있다. 이를 위해서 회로 설계의 최소 선폭과 소자 크기는 지속적으로 감소하고 있고 이를 위한 배선 기술들은 플라즈마 공정을 이용한 식각공정에 크게 의존하고 있다. 식각공정에 있어서 반응가스의 조성은 식각 속도와 선택도를 결정하는 중요한 요소이다. 본 연구에서는 CIS QMS (closed ion source quadrupole mass spectrometer)를 이용하여 CF4+Ar를 이용한 실리콘 산화막의 플라즈마 식각 공정 시 생성되는 라디칼과 이온 종들을 측정하였다. Ar 이온이 기판표면과 충돌하여 기판물질간의 결합을 깨놓으면, 반응성 기체 및 라디칼과의 반응성이 커져서 식각 속도를 향상 시키게 된다. 본 실험에서는 2 MHz의 RPS (remote plasma source)를 이용하여 플라즈마를 발생시키고 13.56 MHz의 rf 전력을 기판에 인가하여 식각할 웨이퍼에 바이어스 전압을 유도하였다. CF4/(CF4+Ar)의 가스 혼합비가 커질수록 식각 부산물인 SiF3의 양은 증가 하였으며, CF4 혼합비가 0일 때(Ar 100%) 비하여 1일 때(CF4 100%) SiF3의 QMS 이온 전류는 106배 증가하였다. 이때의 Si와 결합하여 SiF3를 형성하는 F라디칼의 소모는 0.5배로 감소하였다. 또한 RPS power가 800 W일 때 플라즈마에 의해서 CF4는 CF3, CF2, CF로 해리 되며 SiO2 식각 시 라디칼의 직접적인 식각과 Si_F2의 흡착에 관여되는 F라디칼의 양은 CF3 대비 7%로 검출되었고, 식각 부산물인 SiF3는 13%로 측정되었다. Ar의 혼합비를 0 %에서 100%까지 증가시켜 가면서 측정한 결과 F/CF3는 $1.0{\times}105$에서 $2.8{\times}102$로 변화하였다. SiF3/CF3는 1.8에서 6.3으로 증가하여 Ar을 25% 이상 혼합하는 것은 이온 충돌 효과에 의한 식각 속도의 증진 기대와는 반대로 작용하는 것으로 판단된다.

  • PDF