Lee Eun-Seon;Yang Jin-Seok;Lim Jung-Muk;Moon Ki-Young;Lee Jae-Seung;Chung Tai-Myoung
The KIPS Transactions:PartC
/
v.12C
no.3
s.99
/
pp.347-360
/
2005
E-Government service is national project that is necessary for international competitiveness, openness of government and effectiveness of governmental work process. E-Government security is very important because it treats data has relatively high sensitivity. But, until now, the development point of E-Government service has been limited to only it's contents and infrastructure based on web without consideration of E-Government security. Lately research for E-Government security has been studied by some advanced country of E-Government service, but it is insufficient. To construct E-Government security based on web Infra, first of all, analysis of web service security technology is needed to precede. And then research for appling the technology to E-Government service are required. We propose secure E-Government service scenario with web service security technology based on development stages of E-Government service. We also suggest overall view and secure scenario of E-Government service in Integrated Computing Environment.
In today's business environment, not only human resources management but work efficiency is getting substantial attention as well. Employees are one of the most significant and valuable resources in an organization who can play a critical role in accomplishing organizational goals and purposes. This study examines the effect of employee job satisfaction(affective and cognitive satisfaction) on job performance. Furthermore, this study examines the moderating effect of leadership type (transactional and servant leadership) between job satisfaction on job performance. As a result, affective and cognitive satisfaction were shown to positively affect employee job performance. Especially, cognitive satisfaction has more influenced on job performance than affective satisfaction. Second, transactional and servant leadership were not shown to affect employee job performance. However, transactional leadership had a moderating effect between job satisfaction on job performance.
This research is analyzed the effect of teacher's sense of efficacy from childcare teacher on happiness. The aim is to verifying the interactional medium effect and regulating the result of job stress regulating result between teacher and children. Therefore, the 7th of survey data from Panel Study on Korean Children was referenced in this paper. The respondents of this data are 348 children who just 5 years old and those teachers in. The final results were verified by adopting hierarchical analysis. Likewise, the results also showed the medium effect by the sobel test. Based on the results, it was shown that firstly, the teacher's sense of efficacy from childcare teacher has a positive impact on happiness. Secondly, there is a medium effect creating by interacted between teacher and children. Thirdly, the influence between happiness and the teacher's sense of efficacy lead to regulating the result of job stress. Hence, for increasing the happiness of childcare teacher, it is necessary to seek a program with practicality.
Kim, Young-Hee;Lee, Taek-Hyun;Kim, Jong-Myoung;Park, Won-Hyung;Koo, Kwang-Ho
Convergence Security Journal
/
v.19
no.2
/
pp.29-38
/
2019
For that reason, trend research has been actively conducted to identify and analyze the key topics in large amounts of data and information. Also personal information protection field is increasing activities in order to identify prospects and trends in advance for preemptive response. However, only research based on technology such as trends in information security field and personal information protection solution is broadly taking place. In this study, threat-based trends in personal information protection field is analyzed through text mining method. This will be the key to deduct undiscovered issues and provide visibility of current and future trends. Policy formulation is possible for companies handling personal information and for that reason, it is expected to be used for searching direction of strategy establishment for effective response.
Currently, NTIS (National Technology Information Service) is building an interactive search service based on artificial intelligence technology. In order to understand users' search intentions and provide R&D information, an interactive search service is built based on deep learning models and morpheme analyzers. The deep learning model learns based on the log data loaded when using NTIS and interactive search services and understands the user's search intention. And it provides task information through step-by-step search. Understanding the search intent makes exception handling easier, and step-by-step search makes it easier and faster to obtain the desired information than integrated search. For future research, it is necessary to expand the range of information provided to users.
As the global economy stagnated due to the Corona 19 virus from Wuhan, China, most countries, including the US Federal Reserve System, introduced policies to boost the economy by increasing the amount of money. Most of the stock investors tend to invest only by listening to the recommendations of famous YouTubers or acquaintances without analyzing the financial statements of the company, so there is a high possibility of the loss of stock investments. Therefore, in this research, I have used artificial intelligence deep learning techniques developed under the existing automatic trading conditions to analyze and predict macro-indicators that affect stock prices, giving weights on individual stock price predictions through correlations that affect stock prices. In addition, since stock prices react sensitively to real-time stock market news, a more accurate stock price prediction is made by reflecting the weight to the stock price predicted by artificial intelligence through stock market news text mining, providing stock investors with the basis for deciding to make a proper stock investment.
This study proposed an analysis framework for real-time prediction of CNC processing defects using machine learning-based models that are recently attracting attention as processing defect prediction methods, and applied it to CNC machines. Analysis shows that the XGBoost, CatBoost, and LightGBM models have the same best accuracy, precision, recall, F1 score, and AUC, of which the LightGBM model took the shortest execution time. This short run time has practical advantages such as reducing actual system deployment costs, reducing the probability of CNC machine damage due to rapid prediction of defects, and increasing overall CNC machine utilization, confirming that the LightGBM model is the most effective machine learning model for CNC machines with only basic sensors installed. In addition, it was confirmed that classification performance was maximized when an ensemble model consisting of LightGBM, ExtraTrees, k-Nearest Neighbors, and logistic regression models was applied in situations where there are no restrictions on execution time and computing power.
This study attempted to examine the effect of education and training on organizational performance based on HCCP research through the systematic review of previous studies. For this, 29 papers used HCCP data were selected and analyzed, and the research results are as follows. First, the research results showed that education and training had a positive effect on non-financial performance such as organizational commitment and job satisfaction, and financial performance such as sales and operating profit. Second, in order for education and training to affect organizational performance, job satisfaction, organizational culture, and education transfer were found to be important factors. Third, for effective transfer of education and training, it is necessary to establish a system that can be applied to the field after education and training, finally, it suggested the need for research to be conducted to reveal the practical effectiveness of education and training by measuring the degree to which education and training contributed to financial performance more closely.
This study aims to identify the primary user group in the growing metaverse space based on the increased interest during the COVID-19 era. It also aims to explore the predictive factors for metaverse adoption. To predict online activities, the study examined user purposes, motivations, and relevant demographic factors as predictive variables through model analysis. The data from the Korean Media Panel Survey were used, and a two-stage analysis with the Heckman two-stage sample selection model was conducted to predict metaverse users. The analysis revealed that the key factors influencing metaverse adoption were offline activities, openness, OTT usage, and purchasing of paid content. Moreover, in the second stage model, openness, gender, and paid content purchases were identified as significant variables for increasing metaverse usage time. These results indicate that understanding metaverse users is essential in the context of the rising interest in online activities during the COVID-19 era and can provide valuable insights for metaverse platform-related companies and developers.
In the real estate industry, the latest changes in the Fourth Industrial Revolution, such as big data analytics, machine learning, and VR (virtual reality), combine to bring about industry change. Proptech is a new term combining properties and technology. This study aims to derive and analyze from a comprehensive perspective the quality factors (systems, services, interfaces, information) for mobile real estate brokerage services that are well known and used in the domestic market. The surveys in this study were conducted online and offline and a total of 161 samples were used for statistical analysis. As a result, all hypotheses were approved to except system quality and service quality. The results show that the domestic proptech companies who are mostly focused on real estate brokerage services, peer-to-peer lending, advertising platforms and apartments need to grow in various fields of proptech business of other countries including Europe, USA and China.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.