• Title/Summary/Keyword: 기어 설계

Search Result 347, Processing Time 0.024 seconds

Development of the Decelerator for Briquetting Machine with Low Vibration (저진동 슬래그 분쇄장치용 감속기 개발)

  • Lee, Hyoung Woo;Hur, Nam Soo;Kim, In Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1043-1049
    • /
    • 2012
  • In order to develop the decelerator for briquetting machine which composed of multi-staged gears, shafts and bearings, static design of the decelerator has been carried out through the analysis of bending and face forces, including structural analysis, applied on those teeth in accordance with AGMA(American Gear Manufacturers Association) standard. And also, dynamic design has been carried out with considering of vibratory forces caused by unbalance mass and transmitting error of gear. On the results of vibration analysis, it has been confirmed that there is not any critical speed within its operating range.

Optimum Design of Multi-Stage Gear Drive Using Genetic Algorithm Mixed Binary and Real Encoding (이진코딩과 실수코딩이 조합된 유전 알고리즘을 이용한 다단 기어장치의 최적설계)

  • 정태형;홍현기;이정상
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.118-123
    • /
    • 2004
  • In this study, genetic algorithm mixed binary and real encoding is proposed to deal with design variables of various types. And that is applied to optimum design of Multi-stage gear drive. Design of pressure vessel which is mixed discrete and continuous variables is applied to verify reasonableness of proposed genetic algorithm. The proposed genetic algorithm is applied for the gear ratio optimization and the volume minimization of geared motor which is used in field. In result, it shows that the volume has decreased about 8% compared with the existing geared motor.

  • PDF

A Study on the Modeling of Helical Gear using Automatic Design Program (자동설계 프로그램을 이용한 헬리컬 기어 모델링에 관한 연구)

  • 김민주;이승수;박정보;전언찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.591-594
    • /
    • 2002
  • In this study, we develop automatic design program, which create 3D model of spur gear and helical gear used VisualLISP and create helical gear in the CATIA using 2D profile of gear. This model become the standard models which give not only in itself mold information but also compare processed product with measuring date. Spur gear require mathematical examination of involute curve and trocoidal fillet curve. Automatic design program, which have a mathematical development create the profile of spur gear.

  • PDF

A Study on Shape Design Method by Instant Velocity Centers of Rotating Outer-Ring Type Epicycloid Plate Gear (순간속도중심을 이용한 외륜회전형 에피사이클로이드 판기어의 형상설계법에 관한 연구)

  • 장세원;신중호;권순만;윤호업
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1398-1401
    • /
    • 2004
  • This paper proposes a new approach for the shape design of the rotating outer-ring type epicycloid plate gear by using instant velocity center. First, this method defines the instant velocity centers for rotating outer-ring type epicycloid plate gear and calculates the contact angles and the contact points by using the geometric relationships and the kinematic properties of the reducer. Second, it generates the full shape of the cycloidal plate gear. Finally, the paper develops CAD-program for construction of the design automation using the proposed method. This CAD-program is developed to have the functions of the friendly user interface and the simulation of the real operation for the cycloid reducer.

  • PDF

Study on the Design Program for Non-standard Plastic Gear (플라스틱 기어용 비표준 기어 설계프로그램의 개발)

  • Heo, M.B.;Ham, S.H.;Nam, W.K.;Oh, S.H.
    • Journal of Power System Engineering
    • /
    • v.15 no.4
    • /
    • pp.54-59
    • /
    • 2011
  • Currently, plastic gear is widely used as parts of office equipment and industrial machines, because plastic substance has an advantage of light weight and possible to operate in oil-fewer conditions. However, under cyclic loadings, their occurred repetitive deformation due to weak tensile strength and bending stress rather than metal gear. Furthermore, they have a problem of attrition and breakage owing to frictional heat. For solving these problems, when plastic gear's opponents are metal gear, we should design that plastic gear's tooth be thick and metal gear's tooth be thin. In this research, we developed the program which developing tooth profile of non-standard gears automatically and calculating over-pin diameter for inspection after making gear.

Development of Durability Estimation and Design Systems of Worm Gears (웜기어의 강도평가 및 설계시스템 개발에 관한 연구)

  • 정태형;백재협
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.207-216
    • /
    • 1997
  • We developed the durability estimation and design systems to minimize the volume, considering the durability, efficiency, and design requirements of worm gears. That is, we consider each kind of factors affecting on durability on the basis of AGMA Standard for the cylindrical and double-enveloping worm gears. We also estimate input power on the basis of wear and durability, bending strength and deflection of worm shaft, and we developed the durability estimation and design systems of power transmission worm gears introducing the optimal design method on the personal computer to be easily used in field. Also, we developed a method which converts the design variables obtained from the optimal design method to integer values(number of worm threads, number of worm threads, number of worm wheel teeth, etc.,) to be used in real design and production. The developed durability estimation and design method can be easily applied to the design of worm gears used as power transmission devices in machineries and is expected to be used for weight minimization of worm gear unit.

  • PDF

Gear Train Design of 8-Speed Automatic Transmission for Tractor (트랙터 8단 자동변속기 기어 열 설계)

  • Jung, G.H.
    • Journal of Drive and Control
    • /
    • v.10 no.2
    • /
    • pp.30-36
    • /
    • 2013
  • Tractor is a farm vehicle that is designed to provide a high tractive effort at low speed. It is used for versatile agricultural tasks such as hauling a trailer, tillage, mowing and construction work. Most older tractors use a manual transmission. However, as the intensity of work increases, tractors equipped with automatic transmission become popular due to the work convenience. In order to give the operator a large degree of control in field work, 24 gears with automatic 8-speed and manual 3-speed are arranged in transmission. This paper deals with the gear train that is designed for 8-speed automatic transmission by the engagement of multi-disk clutches. The gear ratio for each speed as well as power transmission mechanism is analyzed through velocity analysis. In addition, constraints of mesh gear ratio are derived by investigating the power flow path in velocity diagram for the given 8-speed gear ratio.

An Optimum Design Method of Hypoid Gear by Minimizing Volume (하이포이드 기어의 체적 최소화 최적 설계)

  • Lee, Ki-Hun;Lee, Geun-Ho;Bae, In-Ho;Chong, Tae-Hyong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.55-61
    • /
    • 2007
  • The hypoid gear has advantage for the high reduction ratio and compactness. But, geometry design and strength evaluation of the hypoid gear depend on the machine tool of specific production companies because the geometry design and strength evaluation of the hypoid gear are complex and difficult. This paper proposes the development of the design programs to satisfying the geometry and strength of a hypoid gear through optimization technique using the genetic algorithm. The genetic algorithm is designed to optimize a method for minimizing volume. The existing design of hypoid gear in the forklift truck axle is compared with the results of developed optimum design program.

Optimization of Gear Webs for Rotorcraft Engine Reduction Gear Train (회전익기용 엔진 감속 기어열의 웹 형상 최적화)

  • Kim, Jaeseung;Kim, Suchul;Sohn, Jonghyeon;Moon, Sanggon;Lee, Geunho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.12
    • /
    • pp.953-960
    • /
    • 2020
  • This paper presents an optimization of gear web design used in a main gear train of an engine reduction gearbox for a rotorcraft. The optimization involves the minimization of a total weight, transmission error, misalignment, and face load distribution factor. In particular, three design variables such as a gear web thickness, location of rim-web connection, and location of shaft-web connection were set as design parameters. In the optimization process, web, rim and shaft of gears were converted from the 3D CAD geometry model to the finite element model, and then provided as input to the gear simulation program, MASTA. Lastly, NSGA-II optimization method was used to find the best combination of design parameters. As a result of the optimization, the total weight, transmission error, misalignment, face load distribution factor were all reduced, and the maximum stress was also shown to be a safe level, confirming that the overall gear performance was improved.

Generation and Preliminary Design of Compound Multi-Stage Gear Drive Mechanisms (복합 다단 기어장치 메커니즘의 생성 및 초기설계)

  • 정태형;김장수;박승현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.53-58
    • /
    • 2003
  • In recent years, the need for multi-stage gear drives, which highly reduce output speed, has been increased. However, the design of multi-stage gear drives have been carried out by a limited number of experts. The consideration for the direction of input and output axes also makes their design very difficult. The purpose of this study is to develop an algorithm for automatically generating complex multi-stage gear drives and to implement a design supporting system for multi-stage gear drives. There are 4 stages in the proposed algorithm, and major design parameters,.such as the direction of input and output axes, reduction ratio, etc. are set up in the first stage. In the second stage, all mechanisms are generated, and various rules are applied to select feasible mechanisms. In the third stage, the gear ratio of each stage is divided from total gear ratio. Next, the specifications of gears for feasible mechanisms are calculated and their bending strength and surface durability are estimated. In the forth stage, appraised indexes are calculated and provided to support the estimation of the generated gear drives.

  • PDF