• Title/Summary/Keyword: 기반

Search Result 109,203, Processing Time 0.115 seconds

Estimation of irrigation return flow from paddy fields on agricultural watersheds (농업유역의 논 관개 회귀수량 추정)

  • Kim, Ha-Young;Nam, Won-Ho;Mun, Young-Sik;An, Hyun-Uk;Kim, Jonggun;Shin, Yongchul;Do, Jong-Won;Lee, Kwang-Ya
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Irrigation water supplied to the paddy field is consumed in the amount of evapotranspiration, underground infiltration, and natural and artificial drainage from the paddy field. Irrigation return flow is defined as the excess of irrigation water that is not consumed by evapotranspiration and crop, and which returns to an aquifer by infiltration or drainage. The research on estimating the return flow play an important part in water circulation management of agricultural watershed. However, the return flow rate calculations are needs because the result of calculating return flow is different depending on irrigation channel water loss, analysis methods, and local characteristics. In this study, the irrigation return flow rate of agricultural watershed was estimated using the monitoring and SWMM (Storm Water Management Model) modeling from 2017 to 2020 for the Heungeop reservoir located in Wonju, Gangwon-do. SWMM modeling was performed by weather data and observation data, water of supply and drainage were estimated as the result of SWMM model analysis. The applicability of the SWMM model was verified using RMSE and R-square values. The result of analysis from 2017 to 2020, the average annual quick return flow rate was 53.1%. Based on these results, the analysis of water circulation characteristics can perform, it can be provided as basic data for integrated water management.

Effects of Forage-Rice Cropping Systems on the Growth and Grain Quality of Early Maturing Rice Cultivars and Soil Chemical Properties in Paddy Fields in Southern Korea (사료작물-벼 작부체계가 조생종 벼의 생육과 미질 특성 및 토양의 화학적 특성에 미치는 영향)

  • Oh, Seo Young;Oh, Seong Hwan;Seo, Jong Ho;Choi, Jisu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.4
    • /
    • pp.297-306
    • /
    • 2021
  • To select rice (Oryza sativa L.) cultivars suitable for forage-rice double cropping system, the growth and grain quality of four early maturing rice cultivars (Joun, Jopyeong, Haedamssal, and Unkwang), and the chemical properties of soils were investigated under single- (fallow-rice) and forage-rice double-cropping systems in paddy fields in Miryang, southern Korea. The soil where two forage crops [Italian ryegrass (Lolium multiflorum Lam.) and oat (Avena sativa L.)] were cultivated during winter had a slightly lower pH; an increase in total nitrogen (T-N), K, Ca, and Na contents; and a slight decrease in organic matter and available P2O5 contents, compared with the soil fallowed during winter. This shows that the chemical properties of paddy soils can be improved by winter forage cropping. At the heading stage, the culm length, panicle length, panicle number, and leaf color of all cultivars, except for Haedamssal, were generally higher under double-cropping than under single-cropping. For Haedamssal, the culm length and leaf color did not differ between the cropping systems, but the panicle length was slightly shortened and its panicle number increased under double-cropping. After harvest, the yield of milled rice decreased for all cultivars except Haedamssal, but increased in Haedamssal under double-cropping. The head rice rate was slightly higher under double cropping, particularly in Jopyeong and Haedamssal, than under single-cropping. The protein content of milled rice under double cropping was higher and its amylose content was similar or slightly lower compared to those of rice under single cropping, resulting in decreased Toyo values for rice under double-cropping. The pasting temperature did not differ significantly between the cropping systems. However, Haedamssal had a low pasting temperature but a high Toyo value under double cropping, compared to the other three cultivars, suggesting that its palatability is relatively high. Furthermore, panicle number increased and milled rice yield did not decrease, even under double cropping. Therefore, Haedamssal seems to be the best cultivar for paddy-based double cropping with forage crops.

A Study on the Original Landscape for the Restoration and Maintenance of Buyongjeong and Juhamnu Areas in Changdeokgung Palace (창덕궁 부용정과 주합루 권역의 복원정비를 위한 원형 경관 고찰)

  • Oh, Jun-Young;Yang, Ki-Cheol
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.39 no.4
    • /
    • pp.24-37
    • /
    • 2021
  • This study was conducted to newly examine the original landscape of Buyongjeong(芙蓉亭) and Juhamnu(宙合樓) areas in Changdeokgung Palace(昌德宮), focusing on the modern period including the Korean Empire, and to derive useful research results for restoration and maintenance in the future. The study results can be summarized as follows. First, the artificial island in Buyongji(芙蓉池) was originally made up of a straight layer using well-trimmed processed stone. However, during the maintenance work in the 1960s and 1970s, the artificial island in Buyongji was transformed into a mixture of natural and processed stones. The handrail installed on the upper part of the artificial island in Buyongji is a unique facility that is hard to find similar cases. The handrail existed even during the Korean Empire, but was completely destroyed during the Japanese colonial period. Second, Chwibyeong(翠屛), which is currently located on the left and right of Eosumun(魚水門), is the result of a reproduction based on Northern bamboo in 2008. Although there is a view that sees the plant material of Eosumun Chwibyeong as Rigid-branch yew, the specific species is still vague. Looking at the related data and circumstances from various angles, at least in the modern era, it is highly probable that the Eosumun Chwibyeong was made of Chinese juniper like Donggwanwangmyo Shrine(東關王廟) and Guncheongung(乾淸宮) in Gyeongbokgung Palace(景福宮). Third, the backyard of Juhamnu was a space with no dense trees on top of a stone staircase-shaped structure. The stone stairway in the backyard of Juhamnu was maintained in a relatively open form, and it also functioned as a space to pass through the surrounding buildings. However, as large-scale planting work was carried out in the late 1980s, the backyard of Juhamnu was maintained in the same shape as a Terraced Flower Bed, and it was transformed into a closed space where many flowering plants were planted. Fourth, Yeonghwadang Namhaenggak(暎花堂 南行閣), which had a library function like Gyujanggak(奎章閣) and Gaeyuwa(皆有窩), was destroyed in the late 1900s and was difficult to understand in its original form. Based on modern photographs and sketch materials, this study confirmed the arrangement axis of Yeonghwadang Namhaenggak, and confirmed the shape and design features of the building. In addition, an estimated restoration map referring to 「Donggwoldo(東闕圖)」 and 「Donggwoldohyung(東闕圓形)」 was presented for the construction of basic data.

Setting Criteria of Suitable Site for Southern-type Garlic Using Non-linear Regression Model (비선형회귀 분석을 통한 난지형 마늘의 적지기준 설정연구)

  • Choi, Won Jun;Kim, Yong Seok;Shim, Kyo Moon;Hur, Jina;Jo, Sera;Kang, Mingu
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.366-373
    • /
    • 2021
  • This study attempted to establish a field data-based write analysis standard by analyzing field observation data, which is non-linear data of southern garlic. Five regions, including Goheung, Namhae, Sinan, Changnyeong, and Haenam, were selected for analysis. Observation values for each observation station were extracted from the temperature data of farmland in the region through inverse distance weighted. Southern-type garlic production and temperature data were collected for 10 years, from 2010 to 2019. Local regression analysis (Kernel) of the obtained data was performed, and growth temperatures were analyzed, such as 0.8 (18.781℃), 0.9 (18.930℃), 1.0 (19.542℃), 1.1 (20.165℃), and 1.2 (21.042℃) depending on the bandwidth. The analyzed optimum temperature and the grown temperature (4℃/25℃) were applied to extract the growth temperature for each temperature by using the temperature response model analysis. Regression analysis and correlation analysis were performed between the analyzed growth temperature and production data. The coefficient of determination(R2) was analyzed as 0.325 to 0.438, and in the correlation analysis, the correlation coefficient of 0.57 to 0.66 was analyzed at the significance probability 0.001 level. Overall, as the bandwidth increased, the coefficient of determination was higher. However, in all analyses except bandwidth 1.0, it was analyzed that all variables were not used due to bias. The purpose of this study is to accommodate all data through non-linear data. It was analyzed that bandwidth 1.0 with a high coefficient of determination while accepting modeling as a whole is the most suitable.

The Dynamics of CO2 Budget in Gwangneung Deciduous Old-growth Forest: Lessons from the 15 years of Monitoring (광릉 낙엽활엽수 노령림의 CO2 수지 역학: 15년 관측으로부터의 교훈)

  • Yang, Hyunyoung;Kang, Minseok;Kim, Joon;Ryu, Daun;Kim, Su-Jin;Chun, Jung-Hwa;Lim, Jong-Hwan;Park, Chan Woo;Yun, Soon Jin
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.198-221
    • /
    • 2021
  • After large-scale reforestation in the 1960s and 1970s, forests in Korea have gradually been aging. Net ecosystem CO2 exchange of old-growth forests is theoretically near zero; however, it can be a CO2 sink or source depending on the intervention of disturbance or management. In this study, we report the CO2 budget dynamics of the Gwangneung deciduous old-growth forest (GDK) in Korea and examined the following two questions: (1) is the preserved GDK indeed CO2 neutral as theoretically known? and (2) can we explain the dynamics of CO2 budget by the common mechanisms reported in the literature? To answer, we analyzed the 15-year long CO2 flux data measured by eddy covariance technique along with other biometeorological data at the KoFlux GDK site from 2006 to 2020. The results showed that (1) GDK switched back-and-forth between sink and source of CO2 but averaged to be a week CO2 source (and turning to a moderate CO2 source for the recent five years) and (2) the interannual variability of solar radiation, growing season length, and leaf area index showed a positive correlation with that of gross primary production (GPP) (R2=0.32~0.45); whereas the interannual variability of both air and surface temperature was not significantly correlated with that of ecosystem respiration (RE). Furthermore, the machine learning-based model trained using the dataset of early monitoring period (first 10 years) failed to reproduce the observed interannual variations of GPP and RE for the recent five years. Biomass data analysis suggests that carbon emissions from coarse woody debris may have contributed partly to the conversion to a moderate CO2 source. To properly understand and interpret the long-term CO2 budget dynamics of GDK, new framework of analysis and modeling based on complex systems science is needed. Also, it is important to maintain the flux monitoring and data quality along with the monitoring of coarse woody debris and disturbances.

Water Digital Twin for High-tech Electronics Industrial Wastewater Treatment System (I): e-ASM Development and Digital Simulation Implementation (첨단 전자산업 폐수처리시설의 Water Digital Twin(I): e-ASM 모델 개발과 Digital Simulation 구현)

  • Shim, Yerim;Lee, Nahui;Jeong, Chanhyeok;Heo, SungKu;Kim, SangYoon;Nam, KiJeon;Yoo, ChangKyoo
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.63-78
    • /
    • 2022
  • Electronics industrial wastewater treatment facilities release organic wastewaters containing high concentrations of organic pollutants and more than 20 toxic non-biodegradable pollutants. One of the major challenges of the fourth industrial revolution era for the electronics industry is how to treat electronics industrial wastewater efficiently. Therefore, it is necessary to develop an electronics industrial wastewater modeling technique that can evaluate the removal efficiency of organic pollutants, such as chemical oxygen demand (COD), total nitrogen (TN), total phosphorous (TP), and tetramethylammonium hydroxide (TMAH), by digital twinning an electronics industrial organic wastewater treatment facility in a cyber physical system (CPS). In this study, an electronics industrial wastewater activated sludge model (e-ASM) was developed based on the theoretical reaction rates for the removal mechanisms of electronics industrial wastewater considering the growth and decay of micro-organisms. The developed e-ASM can model complex biological removal mechanisms, such as the inhibition of nitrification micro-organisms by non-biodegradable organic pollutants including TMAH, as well as the oxidation, nitrification, and denitrification processes. The proposed e-ASM can be implemented as a Water Digital Twin for real electronics industrial wastewater treatment systems and be utilized for process modeling, effluent quality prediction, process selection, and design efficiency across varying influent characteristics on a CPS.

Fabrication of Portable Self-Powered Wireless Data Transmitting and Receiving System for User Environment Monitoring (사용자 환경 모니터링을 위한 소형 자가발전 무선 데이터 송수신 시스템 개발)

  • Jang, Sunmin;Cho, Sumin;Joung, Yoonsu;Kim, Jaehyoung;Kim, Hyeonsu;Jang, Dayeon;Ra, Yoonsang;Lee, Donghan;La, Moonwoo;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.249-254
    • /
    • 2022
  • With the rapid advance of the semiconductor and Information and communication technologies, remote environment monitoring technology, which can detect and analyze surrounding environmental conditions with various types of sensors and wireless communication technologies, is also drawing attention. However, since the conventional remote environmental monitoring systems require external power supplies, it causes time and space limitations on comfortable usage. In this study, we proposed the concept of the self-powered remote environmental monitoring system by supplying the power with the levitation-electromagnetic generator (L-EMG), which is rationally designed to effectively harvest biomechanical energy in consideration of the mechanical characteristics of biomechanical energy. In this regard, the proposed L-EMG is designed to effectively respond to the external vibration with the movable center magnet considering the mechanical characteristics of the biomechanical energy, such as relatively low-frequency and high amplitude of vibration. Hence the L-EMG based on the fragile force equilibrium can generate high-quality electrical energy to supply power. Additionally, the environmental detective sensor and wireless transmission module are composed of the micro control unit (MCU) to minimize the required power for electronic device operation by applying the sleep mode, resulting in the extension of operation time. Finally, in order to maximize user convenience, a mobile phone application was built to enable easy monitoring of the surrounding environment. Thus, the proposed concept not only verifies the possibility of establishing the self-powered remote environmental monitoring system using biomechanical energy but further suggests a design guideline.

Research on the Measures and Driving Force behind the Three Major Works of Daesoon Jinrihoe in North Korea in Case of the Respective Types of Unification on the Korean Peninsula (한반도 통일 유형별 북한지역의 대순진리회 3대 중요사업 추진 여건과 방안 연구)

  • Park, Young-taek
    • Journal of the Daesoon Academy of Sciences
    • /
    • v.39
    • /
    • pp.137-174
    • /
    • 2021
  • The main theme of this paper centers on how to promote Three Major Works of Daesoon Jinrihoe, charity aid, social welfare, and education projects, during the unification period. Determining the best methods of promotion is crucial because the Three Major Works must be carried out after unification, and the works must remain based on the practice of the philosophy of Haewon-sangsaeng (the Resolution of Grievances for Mutual Beneficence). The idea of Haewon-sangsaeng is in line with the preface of the U.N. Charter and the aim of world peace. North Korean residents are suffering from starvation under their devastated economy, which is certain to face a crisis of materialistic deficiency during reunification. In this study, the peaceful unification of Germany, unification under a period of sudden changes in Yemen, and the militarized unification of Vietnam were taken as case studies to diagnose and analyze the conditions which would affect the implementation of the Three Major Works. These three styles of unification commonly required a considerable budget and other forms of support to carry out the Three Major Works. Especially if unification were to occur after a period of sudden changes, this would require solutions to issues of food, shelter, and medical support due to the loss of numerous lives and the destruction of infrastructure. On the other hand, the UNHCR model was analyzed to determine the implications of expanding mental well prepared and sufficiently qualified professionals, reorganizing standard organizations within complex situations, task direction, preparing sufficient relief goods, budgeting, securing bases in border areas with North Korea, and establishing networks for sponsorship. Based on this, eight detailed tasks in the field of system construction could be used by the operators of the Three Major Works to prepare for unification. Additionally, nine tasks for review were presented in consideration of the timing of unification and the current situation between South and North Korea. In conclusion, in the event of unification, the Three Major Works should not be neglected during the transition period. The manual "Three Major Works during the Unification Period" should include strategic points on organizational formation and mission implementation, forward base and base operation, security and logistics preparation, public relations and external cooperation, safety measures, and transportation and contact systems.

A Study on the Relation between Matteo Ricci and Daesoon Thought: A Phenomenological Interpretation of Ricci in Daesoon Thought (마테오 리치와 대순사상의 관계성에 대한 연구 - 대순사상의 기독교 종장에 대한 종교현상학적 해석 -)

  • Ahn, Shin
    • Journal of the Daesoon Academy of Sciences
    • /
    • v.36
    • /
    • pp.117-152
    • /
    • 2020
  • In Daesoon Thought, Matteo Ricci is regarded highly as a Jongjang, 'religious leader,' (of Christianity). This paper deals with the life and philosophical/theological thought of Matteo Ricci as homo-religiosus from the perspective of phenomenology of religion. Examining his historical background and biographical sketch, I will analyze Ricci's understanding of God, humanity, and salvation and re-evaluate his relationship with Daesoon Thought. Matteo Ricci, born in Italy, became a Jesuit missionary to China and transmitted various products of western civilization. Accepting the pro-cultural approach of Jesuit mission, he applied it to Chinese culture and language by learning the Chinese language and regarding Chinese people as his friends. This was a sympathetic way to transmit Western religion and culture while on Chinese soil. He suggested eight reasons to look towards the future of China with optimism and taught Chinese people his Christian message through his indirect means of understanding and persuasion. In China, Jesuit missionaries called the Christian God 'Tianzhu (Cheonju in Sino-Korean),' meaning Lord of Heaven. Ricci identified the Confucian notion of 'Shangdi (Sangje in Sino-Korean),' meaning Supreme Emperor (or God) with Tianzhu. While translating Confucian scriptures, he found the common ground between Confucianism and Christianity to be the monotheism of ancient Confucianism. He criticized the concepts of God in Buddhism and Daoism, and justified the Christian doctrine of God by way of a Confucian understanding of deity. Ricci's understanding of humanity was based on his Christian faith in creation, and he criticized the Buddhist concept of transmigration. He proposed Christian ethics and doctrine of salvation by using discourse on the afterlife and in particular, the concepts of heaven and hell. Concerning the relationship between Daesoon Thought and Ricci, the following aspects should be examined: 1.) Ricci's contribution to the cultural exchanges between East and West, 2.) his peaceful approach to his mission based on dialogue and persuasion, 3.) the various activities conducted by Ricci as a Christian leader, and 4.) his belief in miraculous healings. His influence on Korea will likewise be explored. Ricci's ultimate aim was to communicate with Asian people and unify East and West under a singular worldview by emphasizing the similarities between the Christian and Confucian concepts of God.

Analysis on Seismic Resistance Capacity of Hollow Concrete Block Reinforced Foundation Ground by Using Shaking Table Test (진동대 시험을 이용한 중공블록 보강 기초의 내진성능분석)

  • Shin, Eun-Chul;Lee, Yeun-Jeung;Yang, Tae Chul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.85-93
    • /
    • 2021
  • The seventy percentage of Korean Peninsular is covered by the mountainous area, and the depth of west sea and south sea is relatively shallow. Therefore, a large scale land reclamation from the sea has been implemented for the construction of industrial complex, residental area, and port and airport facilities. The common problem of reclaimed land is consisted of soft ground, and hence it has low load bearing capacity as well as excessive settlement upon loading on the ground surface. The hollow concrete block has been used to reinforce the loose and soft foundation soil where the medium-high apartment or one-story industrial building is being planned to be built. Recently the earthquakes with the magnitude of 4.0~5.0 have been occurred in the west coastal and southeast coastal areas. Lee (2019) reported the advantages of hollow concrete block reinforced shallow foundation through the static laboratory bearing capacity tests. In this study, the dynamic behavior of hollow concrete block reinforced sandy ground with filling the crushed stone in the hollow space has been investigated by the means of shaking table test with the size of shaking table 1000 mm × 1000 mm. Three types of seismic wave, that is, Ofunato, Hachinohe, Artificial, and two different accelerations (0.154 g, 0.22 g) were applied in the shaking table tests. The horizontal displacement of structure which is situated right above the hollow concrete block reinforced ground was measured by using the LVDT. The relative density of soil ground are varied with 45%, 65%, and 85%, respectively, to investigate the effectiveness of reinforcement by hollow block and measured the magnitude of lateral movement, and compared with the limit value of 0.015h (Building Earthquake Code, 2019). Based on the results of shaking table test for hollow concrete block reinforced sandy ground, honeycell type hollow block gives a large interlocking force due to the filling of crushed stone in the hollow space as well as a great interface friction force by the confining pressure and punching resistance along the inside and outside of hollow concrete block. All these factors are contributed to reduce the great amount of horizontal displacement during the shaking table test. Finally, hollow concrete block reinforced sandy ground for shallow foundation is provided an outstanding reinforced method for medium-high building irrespective of seismic wave and moderate accelerations.