• Title/Summary/Keyword: 기기 건전성

Search Result 106, Processing Time 0.026 seconds

한국원자력연구소 방사선방어기술 개발 및 연구 현황

  • Ha, Jeong-U
    • Journal of Radiation Protection and Research
    • /
    • v.15 no.1
    • /
    • pp.9-13
    • /
    • 1990
  • 1959년 한국원자력연구소가 창립됨과 동시에 &Health Physics&, 즉 보건물리라고 하는 명칭과 조직이 탄생되어, 방사선안전관리의 실무와 보건물리의 연구가 시작되었다. 최초 10년간은 선진제국의 보건물리분야의 연구와 기술을 추적하여 우리나라의 방사선안전관리 기술의 기초를 다지는 시기로서 개인방사선모니터링기술, 환경방사선(능) 모니터링기술 및 방사선방어용계측기기의 교정기술 개발에 중점을 두고 연구개발이 추진되었으며, TRIGA Mark-II 연구용원자로의 가동에 따라 원자로 생체차폐체의 건전성 검증에 관한 유익한 방사선량 측정자료도 얻게 되었다. 즉 이 기간은 방사선안전관리의 체제정비 및 기초기술 확립에 노력한 기간이었다. 1970년대는 원자력 연구개발에 대한 기본방향과 정책의 변경등으로 보건물리 연구조직은 방사선안전관리, 환경연구 그리고 방사화학분야로 분산되었으며, 그로인하여 연구개발활동은 거의 정체되어 겨우 방사선안전관리 실무만이 그 명맥을 유지하였다. 그 결과 우리나라 방사선안전관리 및 그와 관련된 연구개발의 기반이 흔들리게 되었으나, 그러한 환경하에서도 방사선량측정평가기술, 방사선차폐설계기술 및 원자로사고시 피폭선량평가기술의 선진화에 필요한 지식을 얻었으며, 방사선 안전관리에 유익한 실무경험도 축적하게 되었다. 1980년대는 통합된 원자력 연구개발체제의 구축으로 방사선작업종사자 및 일반공중의 피폭저감화 기술개발에 필요한 각종 최신기술을 도입하였고, 관리업무에 있어서도 측정의 정확도와 신뢰성향상 및 새로운 관리기술의 개발에 많은 노력을 한 결과, 유익한성과를 얻게된 기간이다. 특히, 이 기간은 방사선안전관리기술의 선진화를 위한 지식이 축적되어 90년대의 방사선안전관리기술자립화를 위한 전환기로서, 이와같이 축적된 기술은 원자력의 평화적 이용에 크게 기여할 것으로 기대된다.서 dithiothreitol를 투여한 군에서는 우라늄단독투여군에 비해 cretinine의 배설이 상당히 증가하였다(P<0.05). 6. 우라늄오염에 의한 신장의 소견에 있어 우라늄단독투여군은 근위곡세뇨관상피의 공포화 및 종창, microvilli와 brush border의 손실, 세뇨관 상피의 괴사가 관찰되었으며, 간장의 충혈, 중심성 괴사 및 모세관 확장증도 관찰되었다. 그리고 sodium bicarbonate와 생리적 식염수를 병행투여한 군과 우라늄을 투여하고 30분이 지나서 dithiothreitol를 투여한 군에서는 우라늄 단독투여군에 비해 높은 방호효과가 관찰되었으나 다른 실험군에서는 큰 효과가 없는 것으로 나타났다. 결론적으로 우라늄의 체내오염시에는 sodium bicarbonate와 생리적 식염수를 가능한 빨리 병행투여하거나 dithiothreitol을 체내오염후 30분이 지나서 투여하는 방법이 우라늄오염에 대한 제염에 매우 유효할 것으로 생각되며, 특히 우라늄에 의한 인체장해를 유의하게 경감시켜줄 것으로 사료되었다.내의 어떤 부위와도 관계가 되는 것으로 간주되는데 이것이 $(^3H)$ QNB가 $(^3H)$ NMS보다 높은 최대 결합능력 $(B_{max})$을 나타낼 이유이다. (b) 두 종류의 다른 제제에서 우리는 같은 양상의 결과를 관찰하었기에 결점이 많은 homogenates 제제보다는 intact cell aggregates 제제를 수용체 연구에 대한 새로운 실험모형(experiment model)으로 사용할 수 있는 가능성을 제시하고자 한다.$가 38.8%로 가장 많고, 그 다음이 ${\ulcorner}$l9세(歲)이후${\lrcorner}$가 25.2%로서 전체

  • PDF

A Study On The Thermal Movement Of The Reactor Coolant System For PWR (가압 경수로의 냉각재 계통 열팽창 거동에 관한 연구)

  • Yoon, Ki-Seok;Park, Taek sang;Kim, Tae-Wan;Jeon, Jang-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.393-402
    • /
    • 1995
  • The structural analysis of the reactor coolant system mainly consist of too fields. The one is the static analysis considering the impact of pressure and temperature built up during normal operation. The other is the dynamic analysis to estimate the impact of postulated events such as the seismic loads or postulated branch line pipe breaks event. Since the most important goal of the RCS structural analysis is to prove the safety of the RCS during normal operation or postulated events, a widely proven theory having enough conservatism is adopted. The load occurring on the RCS during normal operation is considered as the basic design loading condition throughout whole plant life time. The most typical characteristic of the RCS during normal operation is the thermal expansion of the RCS caused by reactor coolant with high temperature and pressure. Therefore, the exact estimation on the thermal movement of the RCS is needed to get more clear understanding on the thermal movement behavior of the RCS. In this study, the general structural analysis concept and modeling method to evaluate the thermal movement of the RCS under the normal plant operation condition are presented. To discuss the validation of the suggested analysis, analysis results are compared with the measured data which ore referred from the standardized 1000 MWe PWR plant under construction.

  • PDF

Gear Fault Diagnosis Based on Residual Patterns of Current and Vibration Data by Collaborative Robot's Motions Using LSTM (LSTM을 이용한 협동 로봇 동작별 전류 및 진동 데이터 잔차 패턴 기반 기어 결함진단)

  • Baek Ji Hoon;Yoo Dong Yeon;Lee Jung Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.10
    • /
    • pp.445-454
    • /
    • 2023
  • Recently, various fault diagnosis studies are being conducted utilizing data from collaborative robots. Existing studies performing fault diagnosis on collaborative robots use static data collected based on the assumed operation of predefined devices. Therefore, the fault diagnosis model has a limitation of increasing dependency on the learned data patterns. Additionally, there is a limitation in that a diagnosis reflecting the characteristics of collaborative robots operating with multiple joints could not be conducted due to experiments using a single motor. This paper proposes an LSTM diagnostic model that can overcome these two limitations. The proposed method selects representative normal patterns using the correlation analysis of vibration and current data in single-axis and multi-axis work environments, and generates residual patterns through differences from the normal representative patterns. An LSTM model that can perform gear wear diagnosis for each axis is created using the generated residual patterns as inputs. This fault diagnosis model can not only reduce the dependence on the model's learning data patterns through representative patterns for each operation, but also diagnose faults occurring during multi-axis operation. Finally, reflecting both internal and external data characteristics, the fault diagnosis performance was improved, showing a high diagnostic performance of 98.57%.

Seismic Analysis of the Reflective Metal Insulation for Thermal Shielding of Main Equipments of Nuclear Power Plants (원전 설비 열차폐를 위한 반사형 금속단열재의 내진 해석)

  • Kim, Seung-Hyeon;Rhee, Huinam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.166-172
    • /
    • 2016
  • This paper deals with the seismic qualification of the reflective metal insulation for thermal shielding that is installed on the outer surfaces of the main equipment of the primary coolant system of a nuclear power plant. A small-scale model of the reactor pressure vessel, which has equivalent dynamic characteristics, was designed to be tested in domestic seismic testing facilities in the future. In this study, seismic analysis of the small-scale model installed with metal insulation was performed using equivalent static analysis and response spectrum analysis. The required Response Spectrum for main equipment of the primary coolant system of APR-1400 plant were considered to establish the enveloping response spectrum, which was applied to the seismic analysis model. The results from two seismic analysis methods were compared to show the structural adequacy of the metal insulator design against a safe shutdown earthquake. This study will form the basis for the seismic testing to support the seismic qualification of the reflective metal insulator.

Current Status and Investigation of International Co-operative Research Program-PINC(Program for the Inspection of Nickel Alloy Components) (국제공동연구 PINC(Program for the Inspection of Nickel Alloy Components) 현황 및 고찰)

  • Kim, Kyung-Cho;Kang, Sung-Sik;Song, Kyung-Ho;Chung, Koo-Kap;Chung, Hae-Dong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.2
    • /
    • pp.153-161
    • /
    • 2009
  • After several PWSCCs were found in Bugey(France), Ringhals(Sweden), Tihange(Belgium), Oconee, Arkansas, Crystal Fever, Davis-Basse, VC Summer(U.S.A.), Thuruga(Japan), USNRC and PNNL started the research on PWSCC, that is, PINC project. The aim of this project is to fabricate and obtain representative NDE mock-ups with flaws to simulate tight PWSCC cracks, to identify and quantitatively assess NDE methods for accurately detecting, sizing and characterizing tight cracks such as PWSCC, to document the range of locations and crack morphologies associated with PWSCC and observed responses and to incorporate findings from other ongoing PWSCC research programs, as appropriate. By participating in PINC project, Korean morphology technique about PWSCC and NDE technique have improved and become similar lever with other advanced country. Therefore, the evaluation technique of integrity for nickel alloy component has been improved by cooperation with university, research institute and industries.

Corrosion Evaluation for Advanced Fuel Cycle Facilities (선진 핵연료주기 시설(AFC)의 부식건전성 조사, 분석)

  • Hwang, Seong Sik
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.213-217
    • /
    • 2012
  • The amount of spent fuel from nuclear power plants has been increasing. An effective management plan of the spent fuel becomes a critical issue, because the storage capacity of each plant will reach its storage limit in a few years. The volume of high toxic spent fuel can be reduced through a fuel processing. Advanced Fuel Cycle (AFC) system is considered to be one of the options to reduce the toxicity and volume of the spent fuel. It is necessary to set up a test facility to demonstrate the feasibility of the process at the engineering scale. The objective of the work is a development of the safety evaluation technology for the AFC system. The evaluation technology of the AFC structural integrity and processes were surveyed and reviewed. Key evaluation parameters for the main processes such as electrolytic reduction, electrorefining, and electrowinning were obtained. The survey results may be used for the establishment of the AFC regulatory licensing procedure. The establishment of the licensing criteria minimizes the trials and errors of the AFC facility design. Issues taken from the survey on the regulatory procedure and design safety features for the AFC facility provide a chance to resolve potential issues in advance.

Design and Qualification of FPGA-based Controller applying HPD Development Life-Cycle for Nuclear Instrumentation and Control System (HPD 개발수명주기를 적용한 원전 FPGA 기반 제어기의 설계와 검증)

  • Lee, Joon-Ku;Jeong, Kwang-Il;Park, Geun-Ok;Sohn, Kwang-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.6
    • /
    • pp.681-687
    • /
    • 2014
  • Nuclear industries have faced unfavorable circumstances such as an obsolescence of the instrumentation and control system, and therefore nuclear society is striving to resolve this issue fundamentally. IEC and IAEA judge that FPGA technology is a good replacement for Programmable Logic Controller (PLC) of Nuclear Instrumentation and Control System. FPGAs are currently highlighted as an alternative means for obsolete control systems. Because the main function inside an FPGA is initially developed as software, good software quality can impact the reliability of an FPGA-based controller. Therefore, it is necessary to establish a software development aspect strategy that enhances the reliability of an FPGA-based controller. In terms of software development, HDL-Programmed Device (HPD) Development Life Cycle is applied into FPGA-based Controller. The burn-in test and environmental(temperature) test should be performed in order to apply into nuclear instrumentation and control system. Therefore it is ensured that the developed FPGA-based controller are normally operated for 352 hours and 92 hours in test chamber of Korea Institute of Machinery and Materials (KIMM).

Dynamic Characteristics on the CRDM of SMART Reactor (SMART 원자로 제어봉 구동 장치의 동특성해석)

  • Lee, Jang-Won;Cho, Sang-Soon;Kim, Dong-Ok;Park, Jin-Seok;Lee, Won-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1105-1111
    • /
    • 2010
  • The Korea Atomic Energy Research Institutes has been developing the SMART (System integrated Modular Advanced ReacTor), an environment-friendly nuclear reactor for the generation of electricity and to perform desalination. SMART reactors can be exposed to various external and internal loads caused by seismic and coolant flows. The CRDM(control rod drive mechanism), one of structures of the SMART, is a component which is adjusting inserting amount of a control rod, controlling output of reactor power and in an emergency situation, inserting a control rod to stop the reactor. The purpose of this research is performing the analysis of dynamic characteristic to ensure safety and integrity of structure of CRDM. This paper presents two FE-models, 3-D solid model and simplified Beam model of the CRDM in the coolant, and then compared the results of the dynamic characteristic about the two FE-models using a commercial Finite Element tool, ABAQUS CAE V6.8 and ANSYS V12. Beam 4 and beam 188 of simplified-model were also compared each other. And simplified model is updated for accuracy compare to 3-D solid.

A survey and development of a questionnaire related to assess habits of using personal device, knowledge of hearing loss and attitude of hearing protection in adolescents (청소년 개인음향기기 이용습관, 청력손실 원인과 청력보호 이해에 관한 실태조사 및 설문지 개발)

  • Lee, Jang soo;Bahng, Junghwa
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.1
    • /
    • pp.24-34
    • /
    • 2016
  • The popularity of personal listening devices(PLDs) has increased over past years, especially, in adolescents. Overuses and missuses of PLDs could be the cause of noise-induced hearing loss (NIHL). The purposes of this study were (1) to survey middle school students' habits using PLDs, knowledge of hearing loss and attitude of hearing protection and (2) to develope a questionnaire for assessment of habits using PLDs, knowledge of hearing loss and attitude of hearing protection in adolescents. The 41-item questionnaire was designed and used to survey middle school students' habits using PLDs, knowledge of hearing loss and attitude of hearing protection. A total of 404 middle school students aged 14-15 years participated in the survey. Most of the students were found to use PLDs soundly. However, 30 % of students used PLDs for more than 3 hours a day. Also, almost all of the students did not understand knowledge of the causes of hearing loss, but showed interests in hearing protection. However, some students had insufficient understanding of the causes of hearing loss and the needs of hearing protection. The results suggest that the development of programs for adolescents' hearing health is needed.

High-Temperature Structural Analysis of a Small-Scale Prototype of a Process Heat Exchanger (IV) - Macroscopic High-Temperature Elastic-Plastic Analysis - (공정열교환기 소형 시제품에 대한 고온구조해석(IV) - 거시적 고온 탄·소성 구조해석을 중심으로 -)

  • Song, Kee-Nam;Hong, Sung-Deok;Park, Hong-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1249-1255
    • /
    • 2011
  • A PHE (Process Heat Exchanger) is a key component required to transfer heat energy of $950^{\circ}C$ generated in a VHTR (Very High Temperature Reactor) to a chemical reaction that yields a large quantity of hydrogen. A small-scale PHE prototype made of Hastelloy-X was scheduled for testing in a small-scale gas loop at the Korea Atomic Energy Research Institute. In this study, as a part of the evaluation of the high-temperature structural integrity of the PHE prototype, high-temperature structural analysis modeling, and macroscopic thermal and elastic-plastic structural analysis of the PHE prototype were carried out under the gas-loop test conditions as a preliminary qwer123$study before carrying out the performance test in the gas loop. The results obtained in this study will be used to design the performance test setup for the modified PHE prototype.