본 연구는 실제 교실에서 이루어진 학생의 과학 논증과정을 기계학습을 활용한 자동 채점에 적용함으로써, 논증 자동 채점의 가능성 및 개선 방향을 탐색한다. 분자 구조에 대한 고등학생의 과학 논증수업 중 발생한 2,605개의 모든 발화를 대상으로 연구를 진행하였다. 지도 학습을 위해 5가지의 논증 요소로 발화를 분류하였고, 분류된 발화를 대상으로 텍스트 전처리를 수행하였다. 전처리된 학생 발화를 활용하여 서포트 벡터 머신, 의사결정나무, 랜덤 포레스트, 인공신경망의 기계 학습 방법으로 자동 채점 모델을 구성하였다. 불용어 처리가 되지 않은 학생 발화를 활용한 자동 채점의 결과 랜덤 포레스트의 정확도는 65.96%, kappa는 0.5298의 유미한 결과를 얻었다. 불용어 처리를 수행한 학생 발화를 활용한 새로운 채점 모델의 결과 채점의 정확도가 크게 변화하지 않음에도 논증 발화 중 과학 용어 및 논증 요소의 담화표지가 채점 모델의 분류 기준이 되는 결과를 얻었다. 또한 인간 전문가의 논증 채점 과정을 분석하여 얻어진 전문가 형태소를 자동 채점 모델에 생성 규칙 알고리즘으로 적용하였다. 그 결과 의사결정나무에서 반박에 대한 재현율(recall)이 21.74% 증가하였다. 이에 본 연구 결과는 과학 교육 연구에서 기계 학습 및 논증에 대한 자동 채점의 활용 가능성과 연구 방향성을 제안하였다.
문헌정보학 분야의 국내 학술지 논문으로 구성된 문헌집합을 대상으로 기계학습에 기초한 자동분류의 성능에 영향을 미치는 요소들을 검토하였다. 특히, "정보관리학회지"에 수록된 논문에 주제 범주를 자동 할당하는 분류 성능 측면에서 용어 가중치부여 기법, 학습집합 크기, 분류 알고리즘, 범주 할당 방법 등 주요 요소들의 특성을 다각적인 실험을 통해 살펴보았다. 결과적으로 분류 환경 및 문헌집합의 특성에 따라 각 요소를 적절하게 적용하는 것이 효과적이며, 보다 단순한 모델의 사용으로 상당히 좋은 수준의 성능을 도출할 수 있었다. 또한, 국내 학술지 논문의 분류는 특정 논문에 하나 이상의 범주를 할당하는 복수-범주 분류(multi-label classification)가 실제 환경에 부합한다고 할 수 있다. 따라서 이러한 환경을 고려하여 단순하고 빠른 분류 알고리즘과 소규모의 학습집합을 사용하는 최적의 분류 모델을 제안하였다.
예제 기반 학습(instance-based learning) 방법 중 하나인 k-최근접 이웃(k-nearest reighbor, k-NN) 학습은 간단하고 예측 정확도가 비교적 높아 분류 및 회귀 문제 해결을 위한 기반 방법론으로 널리 적용되고 있다. k-NN 학습을 위한 알고리즘은 기본적으로 유클리드 거리 혹은 2-놈(norm)에 기반하여 학습예제들 사이의 거리를 계산한다. 본 논문에서는 유클리드 거리를 일반화한 개념인 p-놈의 사용이 k-NN 학습의 성능에 어떠한 영향을 미치는지 연구하였다. 구체적으로 합성데이터와 다수의 기계학습 벤치마크 문제 및 실제 데이터에 다양한 p-놈을 적용하여 그 일반화 성능을 경험적으로 조사하였다. 실험 결과, 데이터에 잡음이 많이 존재하거나 문제가 어려운 경우에 p의 값을 작게 하는 것이 성능을 향상시킬 수 있었다.
설계공학이라는 말이 공학상의 정식용어로서 널리 쓰여지고 있는 것 같지는 않으나 국내외의 공학을 하는 사람들 사이에는 이미 알려지고 있고 이러한 제목의 서적도 몇가지는 나와 있으며 가까운 장래에 일반으로 통용되는 술어로서 승인될 것이며 그 취급하는 내용도 점차 명확해질 것으로 생각한다. 단적으로 설계공학이란 무엇이냐 하면 다음과 같이 말하여도 될 줄 안다. [좋은 설계를 능률 좋게 행하는 방법을 창출하기 위하여 공학적설계의 본질에 대하여 연구하는 학문 이다.]라고. 종래 우수한 설계자는 기본적 공학을 채득한자가 체험으로 기능 교육적으로 양성되는 것이라고 알려져 왔다. 이것은 비단 설계뿐만 아니라 다른 학문의 경우에도 같으나 특히 설계는 그러한 면이 강한 것이 사실이다. 넓은 의미로의 설계공학은 공학의 모든 영역에 적용되는 것 이며 다시 공학뿐만 아니라 적어도 그 일부는 자연과학의 연구, 비지네스등 적어도 인간이 어떤 목적을 달성하기 위하여 계획하는 경우에도 적용할 수 있는 것이다. 이러한 광범한 영역중에서 본 고에서는 그 주영역을 기계공학으로 하였다. 기계공학중 종래의 기계설계라는 학과중에 기계 설계의 방침이라든지 기계설계상의 유의사항등의 표제하에 설계전반에 관한 문제가 다소는 취 급되어 왔다. 이 기계설계 과목의 학습의 주목적은 기계요소에 관한 지식의 습득이다. 기계기술 자에 요구되는 설계는 설계할 물건의 구체적인 공간적 모양. 치수와 재료를 선정하는 것이 아 니면 안되고 보통은 설계도면의 형태로 주어진다. 이 기계설계의 최종단계에서는 기계요소에 관한 지식은 없어서는 안되므로 기계요소에 관한 학습을 목적으로한 기계설계가 중요함은 말할 것도 없으나 종래의 기계설계만으로는 설계전체에 관한 연구가 부족되어 있음을 부정할 수 없고 Detail을 설계하는 설계자를 양성할 수는 있어도 더 큰 시야를 갖는 설계자의 양성에는 불충분 하였다. 설계공학에는 이점을 충분히 함으로써 종래의 기계설계를 보장하는 뜻도 있다. 설계공 학의 발생은 말할 것도 없이 공업전체의 최근의 경이적인 발달에 기인된 것이다. 즉 공학의 대 발전의 결과로서 공업과 공학에 대한 요청이 과도하게 되어 공업과 공학의 사회에 대한 책임이 증대하였기 때문에 공업. 공학에 종사하는 사람은 옛날보다 훨씬 복잡하게 상관하는 수많은 조 건을 고려하면서 보다 나은 설계를 도모하지 않으면 안되게 되었기 때문이다. 좋은 설계라 함은 무엇이냐, 능률 좋은 설계하려면 어떻게 하면 좋은가 등의 문제에 답하는 것이 설계공학이다. 또는 설계의 process 해석이 설계공학이라고 하여도 좋을 것이다.
탄성파 자료 취득 시 신호와 함께 기록되는 다양한 형태의 잡음은 탄성파 자료의 정확한 해석을 방해하는 요인으로 작용한다. 따라서 탄성파 자료의 잡음 제거는 탄성파 자료 처리 과정 중 필수적인 절차이므로 기계 학습을 포함한 다양한 방식의 잡음 제거 연구가 수행되고 있다. 본 연구에서는 비지도 학습 기반의 탄성파 잡음 제거 모델을 이용하여 중합 전 탄성파 자료의 잡음 제거를 수행하고자 하였으며 총 세 가지의 비지도 학습 기반 기계 학습 모델을 비교하였다. 세 가지의 비지도 학습 모델은 N2NUNET, PATCHUNET, DDUL로 각각 서로 다른 신경망 구조를 통해 정답 자료 없이 탄성파 잡음을 제거한다. 세 가지 모델들을 인공 합성 및 현장 중합 전 탄성파 자료에 적용하여 잡음을 제거한 후 그 결과를 정성적·정량적으로 분석하였으며, 분석 결과 세 가지 비지도 학습 모델 모두 인공 합성 및 현장 자료의 탄성파 잡음을 적절히 제거하였음을 확인하였다. 그 중 N2NUNET 모델이 가장 낮은 잡음 제거 성능을 보여주었으며, PATCHUNET과 DDUL은 거의 유사한 결과를 도출하였지만, DDUL이 정량적으로 근소한 우위를 보였다.
딥러닝 기반 분류 모델에 있어 데이터의 클래스 불균형 문제는 소수 클래스의 분류 성능을 크게 저하시킨다. 본 논문에서는 앞서 언급한 클래스 불균형 문제를 보완하기 위한 방안으로 적대적 학습 기법을 제안한다. 적대적 학습 기법의 성능 향상 여부를 확인하기 위해 총 4종의 딥러닝 기반 분류 모델을 정의하였으며, 해당 모델 간 분류 성능을 비교하였다. 실험 결과, 대화 데이터셋을 이용한 모델 학습 시 적대적 학습 기법을 적용할 경우 다수 클래스의 분류 성능은 유지하면서 동시에 소수 클래스의 분류 성능을 크게 향상시킬 수 있음을 확인하였다.
본 연구는 정상 가동 중에도 회전수가 변하는 기기의 이상 및 고장 진단 방안을 다루고 있다. 회전수가 변함에 따라 비정상적 시계열 특성을 내포한 센서 데이터에 기계학습을 적용할 수 있는 절차를 제시하고자 하였다. 기계학습으로는 k-Nearest Neighbor(k-NN), Support Vector Machine(SVM), Random Forest을 사용하여 이상 및 고장 진단을 수행하였다. 또한 진단 정확성을 비교할 목적으로 이상 감지에 오토인코더, 고장진단에는 합성곱 기반의 Conv1D도 추가로 이용하였다. 비정상적 시계열로부터 통계 및 주파수 속성으로 구성된 시계열 특징 벡터를 추출하고, 추출된 특징 벡터에 정규화 및 차원 축소 기법을 적용하였다. 특징 벡터의 선택과 정규화, 차원 축소 여부에 따라 달라지는 기계학습의 진단 정확도를 비교하였다. 또한, 적용된 학습 알고리즘 별로 초매개변수 최적화 과정과 적층 구조를 설명하였다. 최종적으로 기존의 심층학습과 비교하여, 기계학습도 가변 회전기기의 고장을 정확하게 진단할 수 있는 절차를 제시하였다.
본 연구에서는 민감 정보가 포함된 경우의 서포트 벡터 머신 (SVM) 학습 알고리즘을 제안한다. 기계 학습 모형들이 실세계의 자동화된 의사 결정을 가능하게 하였지만 규제들은 프라이버시 보호를 위해서 민감 정보들의 활용을 제한하고 있다. 특히 인종, 성별, 장애 여부와 같은 법적으로 보호되는 정보들의 프라이버시 보호는 필수이다. 본 연구에서는 완전 동형암호를 활용하여 부분적인 민감 정보가 포함된 경우에 최소 제곱 SVM (LSSVM) 모형을 효율적으로 학습할 수 있는 방법을 제안한다. 본 프레임워크에서는 데이터 소유주가 민감하지 않은 정보와 민감한 정보 모두를 가지고 있고, 이를 기계학습 서비스 제공자에게 제공할 때에 민감 정보만 암호화해서 제공하는 것을 가정한다. 결과적으로 데이터 소유자는 민감 정보를 노출시키지 않으면서도 암호화된 상태로 모형의 학습 정보를 얻을 수 있다. 모형을 실제 활용할 경우에는 모든 정보를 암호화하여 안전하게 예측 결과를 제공할 수 있도록 한다. 실제 데이터에 대한 실험을 통해 본 알고리즘이 동형암호로 구현될 경우에 원래의 LSSVM 모형과 비슷한 성능을 가질 수 있음을 확인해 볼 수 있었다. 또한, 개선된 효율적인 알고리즘에 대한 실험은 적은 성능 저하로 큰 연산 효율성을 달성할 가능성을 입증하였다.
인터넷의 급격한 발전과 광범위한 보급에 따라 과거 전화, 서신 또는 직접방문을 통하여 해결하던 고객상담의 상당부분은 인터넷을 이용한 전자우편 및 전자게시판을 이용하는 방향으로 꾸준히 대치되고 있다. 인터넷을 통한 고객과의 접촉방식의 대부분을 차지하는 전자우편과 전자게시판은, 기존의 방식 특히 전화에 비하여 즉각적인 응답을 기대하기가 어렵다는 측면이 고객에게는 가장 큰 불만사항이 되고 있다. 본 논문에서는 문서로 이루어진 전자우편 또는 전자게시판의 고객 상담 내용을 기계학습의 분류기법을 활용하여 담당자를 자동으로 선정함으로써 보다 신속히 고객의 요구에 반응할 수 있는 효과적인 방법을 제안한다. 실제 수집한 다년간의 데이터를 기반으로 다양한 분류기법의 성능을 비교 평가하였으며, 그 결과 k-NN을 이용한 기법이 성능 및 활용도 측면에서 유리함을 보였다 또한, 인터넷을 통한 질문의 경우 상당 수준의 오탈자 및 띄어쓰기 오류를 내포하고 있는데, 바이그램을 이용한 문서처리방법을 이용함으로써 이러한 상황에 효과적으로 대처할 수 있으며, 바이그램으로 문서 처리 시 발생할 수 있는 시스템의 부담을 큰 성능의 저하 없이 최소화하기 위하여 자주 등장한 단어만을 선정하는 방안이 실용성이 있음을 확인하였다.
국내 택배시장 규모는 매출 3조원 이상, 물량 13 억 상자 이상을 처리하고 있다. 2000년 6천억원에서 불과 10년 사이에 500% 이상 확대되었다. 그에 반해 소비자들의 불만 역시 증가하였다. 따라서 현재의 수작업 VOC 분류 방식으로는 적정한 대응에 한계가 있을 수 밖에 없다. 이 논문에서는 효율적인 택배불만 처리를 위해서 불만의 종류와 정도를 기계학습을 이용하여 자동분류 하는 과정 및 결과를 기술한다. 약 93,000건의 VOC(voice of customer)를 대상으로 학습 데이터를 구축하고 여러 자질 선택 기법을 비교하였으며, 기존의 다양한 문서 자동 분류 방법들을 적용해 보았다. 실험결과 지지벡터기계가 가장 좋은 성능을 보였고, 각각의 F-measure 값은 불만의 정도는 83.1%, 불만의 종류는 75.9% 로 측정되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.