Browse > Article
http://dx.doi.org/10.7582/GGE.2022.25.2.071

The Use of Unsupervised Machine Learning for the Attenuation of Seismic Noise  

Kim, Sujeong (Department of Geology, Kyungpook National University)
Jun, Hyunggu (Department of Geology, Kyungpook National University)
Publication Information
Geophysics and Geophysical Exploration / v.25, no.2, 2022 , pp. 71-84 More about this Journal
Abstract
When acquiring seismic data, various types of simultaneously recorded seismic noise hinder accurate interpretation. Therefore, it is essential to attenuate this noise during the processing of seismic data and research on seismic noise attenuation. For this purpose, machine learning is extensively used. This study attempts to attenuate noise in prestack seismic data using unsupervised machine learning. Three unsupervised machine learning models, N2NUNET, PATCHUNET, and DDUL, are trained and applied to synthetic and field prestack seismic data to attenuate the noise and leave clean seismic data. The results are qualitatively and quantitatively analyzed and demonstrated that all three unsupervised learning models succeeded in removing seismic noise from both synthetic and field data. Of the three, the N2NUNET model performed the worst, and the PATCHUNET and DDUL models produced almost identical results, although the DDUL model performed slightly better.
Keywords
seismic noise; seismic data processing; unsupervised machine learning; noise attenuation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Benesty, J., Chen, J., Huang, Y., and Cohen, I., 2009, Pearson correlation coefficient, In Noise reduction in speech processing, Springer, Berlin, Heidelberg. 1-4. doi: 10.1007/978-3-642-00296-0_5.   DOI
2 Canales, L. L., 1984, Random noise reduction, In SEG Technical Program Expanded Abstracts 1984, Society of Exploration Geophysicists, 525-527. doi: 10.1190/1.1894168.   DOI
3 Chen, Y., Zhang, M., Bai, M., and Chen, W., 2019, Improving the signal-to-noise ratio of seismological datasets by unsupervised machine learning, Seismological Research Letters, 90(4), 1552-1564. doi: 10.1785/0220190028.   DOI
4 Fabien-Ouellet, G., and Sarkar, R., 2020, Seismic velocity estimation: A deep recurrent neural-network approach, Geophysics, 85(1), U21-U29. doi: 10.1190/geo2018-0786.1.   DOI
5 Fomel, S, 2007, Local seismic attributes, Geophysics, 72(3), A29-A33. doi: 10.1190/1.2437573.   DOI
6 Hore, A. and Ziou, D., 2010, Image quality metrics: PSNR vs. SSIM, Proceedings of the 20th International Conference on Pattern Recognition, Istanbul, Turkey, 2366-2369. doi: 10.1109/ICPR.2010.579.   DOI
7 Jia, Y., and Ma, J., 2017, What can machine learning do for seismic data processing? An interpolation application, Geophysics, 82(3), V163-V177. doi: 10.1190/geo2016-0300.1.   DOI
8 Jun, H., Kim, C., Kim, H.-J., 2021, Machine-learning based noise attenuation of field seismic data using noise data acquisition, Journal of the Korean Society of Mineral and Energy Resources Engineers, 58(5), 408-417. (in Korean with English abstract) https://www.jksmer.or.kr/articles/article/Pwv9/.   DOI
9 Jun, H., and Cho, Y., 2022, Repeatability enhancement of time-lapse seismic data via a convolutional autoencoder, Geophysical Journal International, 228(2), 1150-1170. doi: 10.1093/gji/ggab397.   DOI
10 Lehtinen, J., Munkberg, J., Hasselgren, J., Laine, S., Karras, T., Aittala, M., and Aila, T., 2018, Noise2noise: Learning image restoration without clean data, arXiv. doi: 10.48550/arXiv.1803.04189.   DOI
11 Li, D., Peng, S., Lu, Y., Guo, Y., and Cui, X., 2019, Seismic structure interpretation based on machine learning: A case study in coal mining, Interpretation, 7(3), SE69-SE79. doi: 10.1190/INT-2018-0208.1.   DOI
12 Martin G. S., Wiley R., and Marfurt K. J., 2006, Marmousi2: An elastic upgrade for Marmousi, The Leading Edge, 25, 156-166. doi: 10.1190/1.2172306.   DOI
13 Ronneberger, O., Fischer, P., and Brox, T., 2015, October, U-net: Convolutional networks for biomedical image segmentation, In International Conference on Medical image computing and computer-assisted intervention, Springer, Cham, 234-241. https://link.springer.com/chapter/10.1007/978-3-319-24574-4_28.
14 Schober, P., Boer, C., and Schwarte, L. A., 2018, Correlation coefficients: appropriate use and interpretation, Anesthesia & Analgesia, 126(5), 1763-1768. doi: 10.1213/ANE.0000000000002864.   DOI
15 Zhou, C., and Brown, S., 2020, Automatic velocity model building with machine learning, In SEG Technical Program Expanded Abstracts 2020, Society of Exploration Geophysicists, 1596-1600. doi: 10.1190/segam2020-3427836.1.   DOI
16 Si, X., and Yuan, Y., 2018, Random noise attenuation based on residual learning of deep convolutional neural network, In SEG technical program expanded abstracts 2018, Society of Exploration Geophysicists, 1986-1990. doi: 10.1190/segam2018-2985176.1.   DOI
17 Wang, H., Zhang, Q., Zhang, G., Fang, J., and Chen, Y., 2020, Self-training and learning the waveform features of microseismic data using an adaptive dictionary, Geophysics, 85(3), KS51-KS61. doi: 10.1190/geo2019-0213.1.   DOI
18 Zhang, C., Frogner, C., Araya-Polo, M., and Hohl, D., 2014, Machine-learning based automated fault detection in seismic traces, In 76th EAGE Conference and Exhibition 2014, European Association of Geoscientists & Engineers, 1-5. doi: 10.3997/2214-4609.20141500.   DOI
19 Liu, B., Yue, J., Zuo, Z., Xu, X., Fu, C., Yang, S., and Jiang, P., 2021, Unsupervised deep learning for random noise attenuation of seismic data, IEEE Geoscience and Remote Sensing Letters, 19, 1-5. doi: 10.1109/LGRS.2021.3057631.   DOI
20 Di, H., Li, C., Smith, S., and Abubakar, A., 2019, Machine learning-assisted seismic interpretation with geologic constraints, In SEG International Exposition and Annual Meeting, Society of Exploration Geophysicists, 5360-5364. doi: 10.1190/segam2019-w4-01.1.   DOI
21 Kumar, P. C., and Sain, K., 2018, Attribute amalgamation-aiding interpretation of faults from seismic data: An example from Waitara 3D prospect in Taranaki basin off New Zealand, Journal of Applied Geophysics, 159, 52-68. doi: 10.1016/j.jappgeo.2018.07.023.   DOI
22 Chen, Y., and Fomel, S., 2014, Random noise attenuation using local similarity, In SEG Technical Program Expanded Abstracts 2014, Society of Exploration Geophysicists, 4360-4365. doi: 10.1190/segam2014-0594.1.   DOI
23 Saad, O. M., and Chen, Y., 2021, A fully unsupervised and highly generalized deep learning approach for random noise suppression, Geophysical Prospecting, 69(4), 709-726. doi: 10.1111/1365-2478.13062.   DOI
24 Dondurur, D., 2018, Acquisition and processing of marine seismic data, Elsevier, 174-212. https://www.elsevier.com/books/acquisition-and-processing-of-marine-seismic-data/dondurur/978-0-12-811490-2
25 Graves, R. W., 1996, Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences, Bulletin of the seismological society of America, 1091-1106. http://web.gps.caltech.edu/~clay/Ge263/Graves1996.pdf.
26 Jun, H., Jou, H. T., Kim, C. H., Lee, S. H., and Kim, H. J., 2020, Random noise attenuation of sparker seismic oceanography data with machine learning, Ocean Science, 16(6), 1367-1383. https://os.copernicus.org/articles/16/1367/2020/os-16-1367-2020.pdf.   DOI
27 Li, H., Yang, W., and Yong, X., 2018, Deep learning for ground-roll noise attenuation, In SEG Technical Program Expanded Abstracts 2018, Society of Exploration Geophysicists, 1981-1985. doi: 10.1190/segam2018-2981295.1.   DOI
28 Quan, Y., Chen, M., Pang, T., and Ji, H., 2020, Self2self with dropout: Learning self-supervised denoising from single image, In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 10, 1890-1898. doi: 10.1109/CVPR42600.2020.00196.   DOI
29 Schuba, C. N., Schuba, J. P., Gray, G. G., and Davy, R. G., 2019, Interface-targeted seismic velocity estimation using machine learning, Geophysical Journal International, 218(1), 45-56. doi: 10.1093/gji/ggz142.   DOI
30 Saad, O. M., and Chen, Y., 2020, Deep denoising autoencoder for seismic random noise attenuation, Geophysics, 85(4), V367-V376. doi: 10.1190/geo2019-0468.1.   DOI
31 Si, X., 2020, Ground roll attenuation with conditional generative adversarial networks, In SEG International Exposition and Annual Meeting, Society of Exploration Geophysicists, Society of Exploration Geophysicists. doi: 10.1190/segam2020-3424945.1.   DOI
32 Yang, L., Wang, S., Chen, X., Saad, O. M., Chen, W., Oboue, Y. A. S. I., and Chen, Y., 2021, Unsupervised 3-D random noise attenuation using deep skip autoencoder, IEEE Transactions on Geoscience and Remote Sensing, 60, 1-16. doi: 10.1109/tgrs.2021.3100455.   DOI
33 Zhang, K., Zuo, W., Chen, Y., Meng, D., and Zhang, L., 2017, Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising, IEEE Transactions on Image Processing, 26(7), 3142-3155. doi: 10.1109/TIP.2017.2662206.   DOI