• Title/Summary/Keyword: 기계적 접합부

Search Result 285, Processing Time 0.028 seconds

A Study on the Weldability and Mechanical Characteristics of Dissimilar Materials Butt Joints by Laser Assisted Friction Stir Welding (Laser-FSW Hybrid 접합기술을 적용한 이종재료(Al6061-T6/SS400) 접합부의 접합성 및 기계적 특성에 관한 연구)

  • Bang, Han-Sur;Bang, Hee-Seon;Kim, Hyun-Su;Kim, Jun-Hyung;Oh, Ik-Hyun;Ro, Chan-Seung
    • Journal of Welding and Joining
    • /
    • v.28 no.6
    • /
    • pp.70-75
    • /
    • 2010
  • This study intends to investigate the weldability and mechanical characteristics of butt weld joints by LAFSW for dissimilar materials (Al6061-T6 and SS400). At optimum welding conditions, the tensile strength of dissimilar materials joints made by FSW is found to be lower than that of LAFSW. Due to the increase in plastic flow and formation of finer recrystallized grains at the TMAZ and SZ by laser preheating in LAFSW, the hardness in LAFSW appeared to be higher than that of FSW. Compared with FSW, finer grain size is observed and elongated grains in parent metal are deformed in the same direction around the nugget zone in TMAZ of Al6061-T6 by LAFSW. Whereas, at weld nugget zone, coarse grain size is appeared in LAFSW compared to FSW, which is owing to more plastic flow due to laser preheating effect. In dissimilar materials joints by LAFSW, ductile mode of fracture is found to occur at Al6061 side with fewer brittle particles. Mixed mode of cleavage area and ductile fracture is observed at SS400 side.

Structural Design of SAR Control Units for Small Satellites Based on Critical Strain Theory (임계변형률 이론에 기반한 초소형 위성용 SAR 제어부 전장품 구조설계)

  • Jeongki Kim;Bonggeon Chae;Seunghun Lee;Hyunung Oh
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.2
    • /
    • pp.12-20
    • /
    • 2024
  • The application of reinforcement design to ensure the structural safety of electronics in small satellites is limited by the spatial constraints of the satellite structure during launch vibrations. Additionally, a reliable evaluation approach is needed for mounting highly integrated devices that are susceptible to fatigue failure. Although the Steinberg fatigue failure theory has been used to assess the structural integrity of electronic devices, recent studies have highlighted its theoretical limitations. In this paper, we propose a structural methodology based on the critical strain theory to design the digital control unit (DCU) of the X-band SAR payload component for the small SAR technology experimental project (S-STEP), a small satellite constellation. To validate the design, we conducted modal and random analyses using simplified modeling techniques. Based on our methodology, we ultimately demonstrated the structural safety of the electronics through analysis results, safety margin derivation, and functional tests conducted both before and after the launch test.

Study on Brazing Properties of Metal/Ceramic Joints (금속/세라믹 결합부의 브레이징 특성에 관한 연구)

  • Lim Jae Kyoo;Seo Do Won;Kim Hyo Jin;Hoa Vu Cong
    • Proceedings of the KWS Conference
    • /
    • v.43
    • /
    • pp.109-111
    • /
    • 2004
  • 20 vol.$\%$ SiC를 포함한 두 층간의 $Si_{3}N_{4}/SiC$ 나노 복합재료는$\alpha$ $-Si_3N_4$,13 nm 크기의 나노탄소 분말 그리고 $5\;wt$\%\;Y_2O_3$의 분말로 두 단계 소결을 통하여 제작된다. $Si_3N_4$ 입계 사이의 결합은 소결 후 변하지 않고 남은 compact와 $51\~62\%$의 기공으로 얻어진 표면적 사이의 반응에 의해 생성된다. 이 연구에서는 Ti 합금을 SiC 층에 브레이징을 이용하여 제작하고 기계적 특성을 연구하였다. 다양한 변형율과 결합물의 강도, 변형율 증가에 따른 층간 변화를 연구하였다. 층간 파괴 형태는 금속과 브레이징 합금 사이의 파괴, 세라믹과 브레이징 합금 사이의 파괴, 그리고 세라믹 내부에서의 파괴를 보였다.

  • PDF

Tensile Performance of Machine-Cut Dovetail Joint with Larch Glulam (낙엽송집성재를 이용한 기계프리커트 주먹장접합부의 인장성능)

  • Park, Joo-Saeng;Hwang, Kweon-Hwan;Park, Moon-Jae;Shim, Kug-Bo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.199-204
    • /
    • 2010
  • Members used for the Korean traditional joints have been processed by handicraft, especially with domestic red pine species. Dovetail joint is most commonly used in woodworking joinery and traditional horizontal and vertical connections. It is able to be processed much easier to cut by handicraft and machines. However, although it is processed straight forwards, it requires a high degree of accuracy to ensure a snug fit. Also, tenons and mortises must fit together with no gap between them so that the joint interlocks tightly. A few scientific studies on the dovetail joints have been conducted so far. For the effective applications of traditional joints and domestic plantation wood species, dovetail joints were assembled by larch glulam members processed by machine pre-cut. To identify the tensile properties of through dovetail joints, larch glulam with 150 150mm in cross section were prepared. Furthermore, various geometric parameters of dovetai joints such as width, length, and tenon angle, were surveyed. The ends in the mortise was cracked mainly at a low strength level in the control specimens without reinforcements. The maximum tensile strengths of reinforced specimens considering real connections such as capital joint and headpiece on a column, increasedby handicraft, especially with domestic red pine species. Dovetail joint is most commonly used in woodworking joinery and traditional horizontal and vertical connections. It is able to be processed much easier to cut by handicraft and machines. However, although it is processed straight forwards, it requires a high degree of accuracy to ensure a snug fit. Also, tenons and mortises must fit together with no gap between them so that the joint interlocks tightly. A few scientific studies on the dovetail joints have been conducted so far. For the effective applications of traditional joints and domestic plantation wood species, dovetail joints were assembled by larch glulam members processed by machine pre-cut. To identify the tensile properties of through dovetail joints, larch glulam with 150 150mm in cross section were prepared. Furthermore, various geometric parameters of dovetai joints such as width, length, and tenon angle, were surveyed. The ends in the mortise was cracked mainly at a low strength level in the control specimens without reinforcements. The maximum tensile strengths of reinforced specimens considering real connections such as capital joint and headpiece on a column, increased by two times with shear failures on the tenon than the control specimens. The maximum tensile strength was obtained in the specimen of 25 degrees, and no difference was observed in the changes of neck widths.

Characteristics of Mechanical Properties at Elevated Temperatures and Residual Stresses in Welded joint of SM570-TMC Steel (SM570-TMC 강의 고온 시 기계적 성질 및 용접접합부의 잔류응력 특징)

  • Lee, Chin Hyunng;Chang, Kyong Ho;Park, Hyun Chan;Lee, Jin Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.3
    • /
    • pp.395-403
    • /
    • 2006
  • Recently constructed bridges often have long spans and simple structure details considering not only the function but other important factors such as aesthetics, maintenance, construction duration and life cycle cost. Therefore, bridges require high-performance steels like extra-thick plate steels and thermo-mechanical control process (TMCP) steels. TMCP stels are now gaining wide attention due to their weldability improved strength and toughness. Recently, SM570-TMC steel, which is a high-strength TMCP steel with a tensile strength of 600 MPa, has been developed and applied to steel structures. However, using this steel in building steel structures requires the elucidation of not only material characteristics but also the mechanical characteristic of welded joints. In this study, high-temperature tensile properties of SM570-TMC steel were investigated through the elevated temperature welded joints of SM570-TMC steel were studied through the three-dimensional thermal elasticplastic analyses on the basis of mechanical properties at high temperatures obtained from the experiment.

Recent Research & Development Trend on Friction Stir Welding and Friction Stir Processing (마찰교반용접(FSW) 및 마찰교반처리(FSP)의 최신 연구개발 동향)

  • Lee, Kwang-Jin
    • Journal of Welding and Joining
    • /
    • v.31 no.2
    • /
    • pp.26-29
    • /
    • 2013
  • The latest research & development trend on friction stir welding and friction stir processing technologies presented in the international symposium, 'Friction Stir Welding & Processing VII'. Papers and presentations about high temperature materials such as advanced high strength steel, stainless steel and titanum alloy shoot up this year. Papers on modeling of metal flow and control of process parameters also increased. The FSP technologies for manufacturing of carbon materials reinforced metal matrix composites were reported, too.

Design Considerations and Pull-Out Behavior of Mechanical Anchor of Reinforcement (철근 기계적 정착장치의 설계 고려사항과 인발특성)

  • 천성철;김대영
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.593-601
    • /
    • 2001
  • In RC structure, sufficient anchorage of reinforcement is necessary for the member to produce the full strength. Generally, conventional standard hook is used for the reinforcement's anchorage. However, the use of standard hook results in steel congestion, making fabrication and construction difficult. Mechanical anchor offers a potential solution to these problems and may also ease fabrication, construction and concrete placement. In this paper, the required characteristics and the design considerations of mechanical anchor were studied. Also, the mechanical anchor was designed according to the requirements. To investigate the pull-out behavior and properness of mechanical anchorage, pull-out tests were performed. The parameters of tests were embedment length, diameter of reinforcement, concrete compressive strength, and spacing of reinforcements. The strengths of mechanical anchor were consistent with the predictions by CCD method. The slip between mechanical anchor and concrete could be controlled under 0.2mm. Therefore, the mechanical anchor with adequate embedment could be used for reinforcement's anchorage. However, it was observed that the strength of mechanical anchors with short spacing of reinforcements was greatly reduced. To apply the mechanical anchor in practice (e.g. anchorage of the beams reinforcements in beam-column joint), other effects that affect the mechanical anchor mechanism, such as confinement effect of adjacent member from frame action or effects of shear reinforcement, should be considered.

Weldability with Process Parameters During Fiber Laser Welding of a Titanium Plate (II) - The Effect of Control of Heat Input on Weldability - (티타늄 판재의 파이버 레이저 용접시 공정변수에 따른 용접특성 (II) - 입열량 제어에 따른 영향 -)

  • Kim, Jong Do;Kim, Ji Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.12
    • /
    • pp.1055-1060
    • /
    • 2016
  • Laser welding is a high-density energy welding method. Hence, deep penetration and high welding speed can be realized with lower heat input as compared with conventional welding. The heat input of a CW laser welding is determined by laser power and welding speed. In this study, bead and lap welding of $0.5mm^t$ pure titanium was performed using a fiber laser. Its weldability with laser power and welding speed was evaluated. Penetration, bead width, joining length, and bead shape were investigated, and the mechanical properties were examined through tensile-shear strength tests. Welds with sound joining length were obtained when the laser power and welding speed were respectively 0.5 kW and 2.5 m/min, and 1.5 kW and 6 m/min, and the weld obtained at low output presented better ductility than that obtained at high output.

Finite Element Analysis of Frictional Contact Problems Using A Contact Element (접촉요소를 사용한 마찰접촉문제의 유한요소해석)

  • Ko, Seok;Lim, Jang-Keun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.1
    • /
    • pp.29-35
    • /
    • 1999
  • 접촉하는 두 물체 사이의 접합부에서는 국북적인 응력집중현상이 발생하여 기계 구조물의 마멸이나 파손의 직접적인 원인이 된다. 기존의 방법들은 복잡한 수식 처리와 반복 계산 때문에 접촉특성에 따라서 해석하기에 어려움이 많았다. 본 논문에서는 마찰이 있는 접촉문제를 반복계산 없이 효과적으로 해석하기 위해서 선형상보성 접촉조건과 가상일의 원리로부터 접촉요소를 개발하여 이를 사용한 유한요소 해석발법을 제안하였다. 연구결과로 평면 및 곡면 접촉문제나 다물체 접촉문제를 기존의 해석방법에 비해 훨씬 편리하고 정확하게 접촉현상을 규명할 수 있었다.

  • PDF

The effects of hydrogen treatment on the properties of Si-doped Ga0.45In0.55P/Ge structures for triple junction solar cells

  • Lee, Sang-Su;Yang, Chang-Jae;Ha, Seung-Gyu;Kim, Chang-Ju;Sin, Geon-Uk;O, Se-Ung;Park, Jin-Seop;Park, Won-Gyu;Choe, Won-Jun;Yun, Ui-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.143-144
    • /
    • 2010
  • 3-5족 화합물 반도체를 이용한 집광형 삼중 접합 태양전지는 40% 이상의 광변환 효율로 많은 주목을 받고 있다[1]. 삼중 접합 태양전지의 하부 셀은 기계적 강도가 높고 장파장을 흡수할 수 있는 Ge이 사용된다. Ge위에 성장될 III-V족 단결정막으로서 Ge과 격자상수가 일치하는 GaInP나 GaAs가 적합하고, 성장 중 V족 원소의 열확산으로 인해 Ge과 pn접합을 형성하게 된다. 이때 GaInP의 P의 경우 GaAs의 As보다 확산계수가 낮아 태양전지 변환효율향상에 유리한 얇은 접합 형성이 가능하고, 표면 에칭효과가 적기 때문에 GaInP를 단결정막으로 선택하여 p-type Ge기판 위 성장으로 단일접합 Ge구조 제작이 가능하다. 하지만 이종접합 구조 성장으로 인해 발생한 계면사이의 전위나 미세결함들이 결정막내부에 존재하게 되며 이러한 결함들은 광학소자 응용 시 비발광 센터로 작용할 뿐 아니라 소자의 누설전류를 증가시키는 원인으로 작용하여 태양전지 변환효율을 감소시키게 된다. 이에 결함감소를 통해 소자의 전기적 특성을 향상시키고자 수소 열처리나 플라즈마 공정을 통해 수소 원자를 박막내부로 확산시키고, 계면이나 박막 내 결함들과 결합시킴으로서 결함들의 비활성화를 유도하는 연구가 많이 진행되어 왔다 [2][3]. 하지만, 격자불일치를 갖는 GaInP/Ge 구조에 대한 수소 열처리 및 불순물 준위의 거동에 대한 연구는 많이 진행되어 있지 않다. 따라서 본 연구에서는 Ga0.45In0.55P/Ge구조에 수소 열처리 공정을 적용을 통하여 단결정막 내부 및 계면에서의 결함밀도를 제어하고 이를 통해 태양 전지의 변환효율을 향상시키고자 한다. <111> 방향으로 $6^{\circ}C$기울어진 p-type Ge(100) 기판 위에 유기금속화학증착법 (MOCVD)을 통해 Si이 도핑된 200 nm의 n-type GaInP층을 성장하여 Ge과 단일접합 n-p 구조를 제작하였다. 제작된 GaInP/Ge구조를 furnace에서 250도에서 90~150분간 시간변화를 주어 수소열처리 공정을 진행하였다. 저온 photoluminescence를 통해 GaInP층의 광학적 특성 변화를 관찰한 결과, 1.872 eV에서 free-exciton peak과 1.761 eV에서 Si 도펀트 saturation에 의해 발생된 D-A (Donor to Acceptor)천이로 판단되는 peak을 검출할 수 있었다. 수소 열처리 시간이 증가함에 따라 free-exciton peak 세기 증가와 반가폭 감소를 확인하였고, D-A peak이 사라지는 것을 관찰할 수 있었다. 이러한 결과는 수소 열처리에 따른 단결정막 내부의 수소원자들이 얕은 불순물(shallow impurity) 들로 작용하는 도펀트들이나, 깊은 준위결함(deep level defect)으로 작용하는 계면근처의 전위, 미세결함들과의 결합으로 결함 비활성화를 야기해 발광세기와 결정질 향상효과를 보인 것으로 판단된다. 본 발표에서는 상술한 결과를 바탕으로 한 수소 열처리를 통한 박막 및 계면에서의 결함준위의 거동에 대한 광분석 결과가 논의될 것이다.

  • PDF