DOI QR코드

DOI QR Code

Structural Design of SAR Control Units for Small Satellites Based on Critical Strain Theory

임계변형률 이론에 기반한 초소형 위성용 SAR 제어부 전장품 구조설계

  • Jeongki Kim (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Bonggeon Chae (STEPLab. Ltd.) ;
  • Seunghun Lee (Hanwha Systems Co. Ltd.) ;
  • Hyunung Oh (Department of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • 김정기 (한국항공대학교 항공우주 및 기계공학과) ;
  • 채봉건 ((주)스텝랩) ;
  • 이승훈 (한화시스템(주)) ;
  • 오현웅 (한국항공대학교 항공우주 및 기계공학과)
  • Received : 2023.10.19
  • Accepted : 2024.03.04
  • Published : 2024.04.30

Abstract

The application of reinforcement design to ensure the structural safety of electronics in small satellites is limited by the spatial constraints of the satellite structure during launch vibrations. Additionally, a reliable evaluation approach is needed for mounting highly integrated devices that are susceptible to fatigue failure. Although the Steinberg fatigue failure theory has been used to assess the structural integrity of electronic devices, recent studies have highlighted its theoretical limitations. In this paper, we propose a structural methodology based on the critical strain theory to design the digital control unit (DCU) of the X-band SAR payload component for the small SAR technology experimental project (S-STEP), a small satellite constellation. To validate the design, we conducted modal and random analyses using simplified modeling techniques. Based on our methodology, we ultimately demonstrated the structural safety of the electronics through analysis results, safety margin derivation, and functional tests conducted both before and after the launch test.

초소형 위성체의 태생적 공간 제약으로 탑재 전장품은 발사진동환경 하 구조건전성 확보를 위한 보강설계 적용에 한계가 존재하며, 피로파괴에 취약한 고집적 소자의 실장으로 고신뢰도의 평가기법이 요구된다. 종래 전장품 구조건전성 평가를 위해 Steinberg 피로파괴 이론이 적용되고 있으나 최근 연구들에서 이론적 한계점들이 보고되고 있다. 본 논문에서는 상기 이론의 한계점을 극복한 임계변형률 이론기반 방법론을 적용하여 초소형 SAR 군집위성 S-STEP(Small SAR Technology Experimental Project)의 X대역 SAR 탑재체 구성품 중 DCU(Digital Control Unit)를 설계하였다. 설계 유효성 검증을 위해 단순화된 모델링 기법을 기반으로 모드 해석, 랜덤 해석을 수행하였다. 적용한 방법론을 기반으로 해석 결과분석 및 안전여유 도출과 발사진동환경시험 전후 기능시험을 통해 최종적으로 전장품의 구조건전성이 확보됨을 입증하였다.

Keywords

Acknowledgement

본 논문은 국방과학연구소의 2019 미래도전기술개발사업 PM 기획사업(초소형 SAR 위성군 설계 및 제작을 통한 운용능력 확보)을 통해 도출된 연구결과입니다.

References

  1. H. U. Oh and S. W. Kim, "S-STEP, a micro SAR satellite based on the smaller, better, faster, cheaper development philosophy," Information & Communications Magazine, vol. 39, no. 1 pp. 44-50, 2021.
  2. D. S. Steinberg, "Vibration analysis for electronic equipment," Jonh Wiley & Sons inc, 2000.
  3. S. Y. Jeong, H. U. Oh, K. J. Lee and B. S. Kim, "Mechanical stability analysis of pcb and component for launch and on-orbit environment based on fatigue failure theory and FEM," Journal of the Korean Society for Aeronautical and Space Sciences, vol. 39, no. 10, pp. 952-958, 2011.
  4. W. B. Lee and G. W. Kim, "Random vibration analysis for satellite design," Aerospace Engineering and technology, vol. 5, no. 2, pp. 102-107, 2006.
  5. H. S. Seo, H. B. Kim, S. H. Woo, J. S. Chae and T. S. Oh, "A study on the vibrational environment test of KSLV-1 demonstration satellite," The Korean Society for Noise and Vibration Engineering 2005 Fall Conference, vol. 2005, no. 5, pp. 966-970, 2005.
  6. I. H. Jung, T. W. Park, J. H. Seo, S. W. Han, & S. H. Kim, "Structural vibration analysis of electronic equipment for satellite under launch environment." Key Engineering Materials, vol 270, pp. 1440-1445. 2004.
  7. A. Garcia, F. Sorribes-Palmer, and G. Alonso. "Application of Steinberg vibration fatigue model for structural verification of space instruments." AIP Conference Proceedings. vol. 1922. no. 1. pp. 1-10, 2018.
  8. M. G. Beda, "A curvature-based interpretation of the stein berg criterion for fatigue life of electronic components," International Symposium on Microelectronics, vol. 2015, no. 1, pp. 1-6, 2015.
  9. T. Y. Park and H. U. Oh, "New pcb strain-based structural design methodology for reliable and rapid evaluation of spaceborne electronics under random vibration," International Journal of Fatigue, vol. 146, pp. 1-12, 2021.
  10. S. C. Kwon, J. H. Son, S. C. Song, J. H. Park, K. R. Koo and H. U. Oh, "Innovative mechanical design strategy for actualizing 80 kg-class X-band active SAR small satellite of S-STEP," Aerospace, 8(6), 149, 2021.
  11. J. D. Clerck and D. S. Epp, "Rotating Machinery, Hybrid Test Methods, Vibro-Acoustics & Laser Vibrometry," Proceedings of the 34th IMAC, A Conference and Exposition on Structural Dynamics 2016, vol 8, 2016.
  12. European Cooperation for Space Standardization, "Space engineering : structural general requirements," ESA Requirements and Standards Division, ECSS-E-ST-32C (REV-1), 2008.
  13. I. Yunis, D. Ludwiczak, "On the use of 3dB qualification margin for structural parts on expendable launch vehicles," In 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, pp. 1-9, 2007.
  14. https://www.parker.com/content/dam/Parker-com/Literature/Chomerics/THERM-A-GAP_500_Series_TB-1016-1-07.pdf.
  15. T. Y. Park, S. C. Kwon, J. C. Park and H. U. Oh, "Investigation of fatigue life of BGA package for launch vibration and on-orbit thermal environment according to heat sink application," Journal of the Korean Society for Noise and Vibration Engineering, vol. 27, no. 5, pp. 555-565, 2017.
  16. European Cooperation for Space Standardization, "Space engineering : testing," ESA Requirements and Standards Division, ECSS-E-ST-10-03C (REV-1), 2008.