• Title/Summary/Keyword: 기계적조절

Search Result 320, Processing Time 0.022 seconds

Comprehending Polymer-Clay Nanocomposites and Their Future Works (고분자-점토 나노복합체 이해와 향후 연구 방향)

  • Choi, Yeong Suk;Chung, In Jae
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.23-36
    • /
    • 2008
  • Polymer-clay nanocomposites, a novel organic-inorganic hybrid, attract much attention from both scientific fields and engineering fields due to their balanced improvements in mechanical properties as well as diffusion behaviors, including flame-retarding and barrier properties, with small amounts of clay. Preparation of polymer-clay nanocomposites, summarized as a process for uniform dispersion of hydrophilic layered clays in hydrophobic polymer matrixes, includes several technologies and scientific phenomena, such as surface-modifications of clay layers, physical properties of clays in liquids and dried states, polymer synthesis, polymer rheology, behaviors of polymer solutions/or monomers in the confined geometry, mechanical properties of polymers and clays. To comprehend complicated physical/chemical phenomena involved in the fabrication of nanocomposites, we reviewed physical properties of clays, structures of clays in nanocomposites, characterization of nanocomposites, the relation between morphology and physical property of nanocomposites, surveyed recent research trends, and then suggested a few strategies or methods for fabrication of nanocomposites reflecting future research directions.

Polymerization and Effect of Organic/Organic Core Shell Binder (Organic/organic Core Shell 바인더의 중합과 처리영향)

  • Sim, Dong-Hyun;Ban, Ji-Eun;Kim, Min-Sung;Seul, Soo-Duk
    • Polymer(Korea)
    • /
    • v.32 no.5
    • /
    • pp.470-477
    • /
    • 2008
  • Core shell binder of organic/organic pair that has two different properties within a particle were prepared by a step emulsion polymerization of methacrylate (MMA), styrene (St), ethyl acrylate (EA), butyl acrylate (BA), and 2-HEMA by using an water soluble initiator(APS) in the presence of an anionic surfactant (SDBS). Unwoven tensile strength of the core shell binder after processing and measuring the PSt/PMMA/2-HEM core shell with the binder is a value represents the highest was $10.75\;kg_f$/2.5cm, elongation measurements PEA/PBA core shell binder showed the highest value was 120.00%. In conclusion, using the core shell binders were able to control the mechanical properties such as tensile strength and elongation.

A study of changes on the physical properties of silk fibroin biological membrane according to the dissolving conditions (실크피브로인 용해조건에 따른 생체막의 물성 변화)

  • Jo, You-Young;Kweon, HaeYong;Lee, Kwang-Gill;Lee, Heui-Sam
    • Journal of Sericultural and Entomological Science
    • /
    • v.50 no.2
    • /
    • pp.71-75
    • /
    • 2012
  • Silk is a natural polymer that has the advantages of the biocompatibility, excellent mechanical strength, low immune rejection, and molding facility. But silk does not dissolve easily in water or general solvent. To investigate the characteristics of silk biological membranes according to dissolving condition of silk fibroin, we made the silk biological membranes using silk fibroin solutions with different amount and dissolving time of silk. The characterizations of the silk biological membranes such as morphology, structure, and mechanical strength were observed. Although each biological membrane has the same fibroin content, there was a significant difference in the thickness and transparency. But there was no significant change in the molecular weight of the silk fibroin solutions and morphology of silk biological membranes. We were established the manufacturing condition for silk fibroin biological membrane. So we expect that the conditions will help in the development of medical supplies in the future.

Poly(ether block amide) (PEBA) Based Membranes for Carbon Dioxide Separation (이산화탄소 분리를 위한 PEBA공중합체 기반 분리막)

  • Lee, Jae Hun;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.29 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • Poly(ether block amide) (PEBA) is one of the commercially important class of block copolymer very much suitable specifically for $CO_2$ separation. Gas separation membrane need to have good mechanical strength as well as high gas permeability. The crystalline polyamide (PA) block provides the mechanical strength while the rubbery polyether (PE) group being $CO_2$-philic facilitate $CO_2$ permeation though the membrane. Composition of thermoplastic and rubbery phase in the polymer are changed to fit into suitable gas separation application. Although PEBA has good permeability, the selectivity of the membrane can be enhanced by incorporating molecular sieve without affection much the gas permeability. Mixed matrix membrane (MMM), a class of composite membrane combine the advantage of polymer matrix with the inorganic fillers. However, there are some disadvantages based on the compatibility of the inorganic fillers and polymeric phase. This review covers both the advantage and limitations of PEBA block copolymer based composite membrane.

Force Transmission in Cellular Adherens Junction Visualized by Engineered FRET Alpha-catenin Sensor (형광공명에너지전이 알파카테닌 센서를 활용한 세포 부착접합부에서의 힘 전달 이미징)

  • Jang, Yoon-Kwan;Suh, Jung-Soo;Suk, Myungeun;Kim, Tae-Jin
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.366-372
    • /
    • 2021
  • Cadherin-Catenin complex is thought to play an essential role in the transmission of force at adherens junction. Due to the lack of proper tools to visualize and detect mechanical force signals, the underlying mechanism by which the cadherin-catenin complex regulates force transmission at intercellular junctions remains elusive. In this study, we visualize cadherin-mediated force transmission using an engineered α-Catenin sensor based on fluorescence resonance energy transfer. Our results reveal that α-catenin is a key force transducer in cadherin-mediated mechanotransduction at cell-cell junctions. Thus, our finding will provide important insights for studying the effects of chemical and physical signals on cell-cell communication and the relationship between physiological and pathological phenomena.

An Experimental Study on the Mechanical Properties of High Modulus Carbon-Epoxy Composite in Salt Water Environment (염수 환경에 노출된 고강성 탄소/에폭시 복합재의 물성치 변화 연구)

  • Moon, Chul-Jin;Lee, Cheong-Lak;Kweon, Jin-Hwe;Choi, Jin-Ho;Jo, Maeng-Hyo;Kim, Tae-Gyeong
    • Composites Research
    • /
    • v.21 no.6
    • /
    • pp.1-7
    • /
    • 2008
  • The main objective of this study is to investigate the effect of salt water on the mechanical properties of a high modulus carbon-epoxy composite. Specimens were made of a carbon-epoxy composite UPN139B of SK Chemical and tested under inplane tension and shear after 0, 1, 3, 6, 9, and 12 months immersion in 3.5% salt water. Acceleration technique such as temperature elevation was not used. The tensile strengths and modulli in fiber and matrix direction did not show any remarkable degradation until 12 months immersion. In contrast to the tensile properties, shear strength and modulus started to gradually decrease up to about 10% of values of dry specimens after 12 months immersion. It was confirmed through the test that the material UPN139B can be an effective material for the shell structures in salt water to resist against the external pressure buckling because of the high fiber directional modulus and corrosion resistance.

Height Suppression of Cucumber and Tomato Plug Seedlings Using of Brushing Stimulus (브러싱 자극을 이용한 오이와 토마토 공정묘의 초장 억제)

  • Kim, Hyeon Min;Lee, Hye Ri;Jeong, Hyeon Woo;Kim, Hye Min;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.285-293
    • /
    • 2018
  • This study aimed to evaluate the effect of height suppression of cucumber and tomato plug seedlings as affected by mechanical stimulus using brushing as environment-friendly method. Cucumber (Cucumis sativus L. 'Joeunbaekdadagi') and tomato (Solanum lycopersicum L. 'Mini Chal') seeds were sown in 40-cell plug trays ($54{\times}27.5{\times}5cm$) filled with growing medium on Oct. 9, 2017. The cultivation environment in a venlo-type glasshouse was maintained as cultivation temperature range of $15-25^{\circ}C$ and the relative humidity of $50{\pm}10%$. Nontreatment and diniconazole ($7.5mg{\cdot}L^{-1}$) application at 15 days after sowing were used as the control. In addition, brushing treatments in cucumber and tomato were applied interval of 2, 4 or 6 hrs for 15 and 20 days, respectively. Plant height, hypocotyl length, and internode length were inhibited for cucumber and tomato in the diniconazole treatment than in the control. The leaf size was reduced, both cucumber and tomato, while the SPAD increased under the diniconazole treatment. However, stem diameter of cucumber was the thickest in the 2 hrs brushing interval treatment. Fresh weights of shoot and root were the significantly lowest in the diniconazole treatment. Application of brushing improved seedlings quality by promoting dry weights of shoot and root, and compactness of tomato seedlings. The chlorophyll fluorescence of tomato seedlings drastically decreased with 2 hrs treatment, indicating that mechanical stress by brushing treatment. The relative growth rate of tomato seedlings was significantly lower in the diniconazole treatment, but cucumber seedlings were not significantly different in all treatments. As a results, height suppression of cucumber and tomato seedlings was best achievement in the diniconazole treatment by the chemical as growth regulator. In an environment-friendly point of view, however, it is considered that 2 hrs brushing interval treatment can be the applicability for replacing the chemical methods in plug seedling growth of cucumber and tomato.

Study on the Eco-friend Frame Sheet with Improved Glasses Temple's Insertion-processibility by Blending Plasticizer of High Specific Heat (친환경 안경테 판재의 심입 가공성 향상을 위한 고비열 가소제 혼입에 관한 연구)

  • Seo, Young Min;Lee, Hae Sung;Lee, Sung Jun;Jung, Sang Won;Kim, Hyun-Chul;Kim, Eun Joo;Go, Young Jun;Choi, Jin Hyun;Lee, Se Guen
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.1
    • /
    • pp.11-17
    • /
    • 2013
  • Purpose: To improve glasses temple's insert processibility of CA/PEG blend, triacetin with higher specific heat values in the processing temperature range is used as second plasticizer. Methods: The total amount of plasticizer is fixed at 30 wt% by CA. To determine optimal CA/PEG/triacetin blend for glasses frame, blends with different composition ratio were examined by various analysis: thermal properties, mechanical properties, glossiness. Results: Specific heat of the CA/PEG blend increased as the content of triacetin. In CA/PEG/triacetin blends, as triacetin concentration is increased, glass transition temperature is decreased and heat conservation rate of composites is increased. Furthermore, CA/PEG/triacetin blend exhibited higher mechanical properties and similar gloss characterization with CA/PEG blend. Conclusions: It is possible to improve the processibility inserting metal support to CA temple through varying the weight ratio of PEG/triacetin. The extruded sheets of CA/PEG/triacetin blend had better glossiness and mechanical properties than those of CA/PEG blend.

The effect of progressive tensional force on mRNA expression of osteoprotegerin and receptor activator of nuclear factor ${\kappa}B$ ligand in the human periodontal ligament cell (기계적 자극이 치주인대 세포의 osteoprotegerin과 receptor activator of nuclear factor ${\kappa}B$ ligand mRNA 발현에 미치는 영향)

  • Lee, Kie-Joo;Lee, Syng-Ill;Hwang, Chung-Ju;Ohk, Seung-Ho;Tian, Yu-Shin
    • The korean journal of orthodontics
    • /
    • v.35 no.4 s.111
    • /
    • pp.262-274
    • /
    • 2005
  • Tooth movement is a result of mutual physiologic responses between the periodontal ligament and alveolar bone stimulated by mechanical strain. The PDL cell and osteoblast are known to have an influence on bone formation by controlling collagen synthesis and alkaline phosphatase activation. Moreover. recent studies have shown that the PDL cell and osteoblast release osteoprotegerin (OPG) and the receptor activator of nuclear factor ぉ ligand (RANKL) to control the level of osteoclast differentiation and activation which in turn influences bone resorption. In this study. progressively increased, continuous tensional force was applied to PDL cells. The objective was to find out which kind of biochemical reactions occur after tensional force application and to illuminate the alveolar bone resorption and apposition mechanism. Continuous and progressively increased tensile force was applied to PDL cells cultured on a petriperm dish with a flexible membrane The amount of $PGE_2$ and ALP synthesis were measured after 1, 3, 0 and 12 hours of force application. Secondly RT-PCR analysis was carried out for OPG and RANKL which control osteoclast differentiation and MMP-1 -8, -9, -13 aud TIMP-1 which regulate the resolution of collagen and resorption of the osteoid layer According to the results. we concluded that progressively increased, concluded force application to human PDL cells reduces $PGE_2$ synthesis, and increases OPG mRNA expression.

Study on the shaping process of turbocharger nozzle slide joint (터보차저 노즐 슬라이드 조인트의 정형공정에 관한 연구)

  • Kim, Bong-Ju;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.107-114
    • /
    • 2017
  • A turbocharger is an engine supercharger that is driven by exhaust gas. It improves the output and fuel efficiency by increasing the charging efficiency of the mixture gas, which is achieved by changing the rotatory power of the turbine connected to the exhaust passage. It is important to control the supercharging for this purpose. A nozzle slide joint is one of the core parts. Austenitic stainless steel is currently used as the material for this part, and its excellent mechanical properties include high heat resistance and corrosion resistance. However, because of its poor machinability, there are many difficulties in producing products with complicated shapes. Machining is used in the production of nozzle slide joints for high dimensional accuracy after metal powder injection molding. As design variables in this study, we investigated the sintering temperature, product stress, deformation rate, radius of curvature of the punch, and angle of the chamfer punch, which are related to the strain and shapes. The goal is to suggest a forming process using Nitronic 60 that does not require machining to manufacture a nozzle slide joint for a turbocharger. Accordingly, we determined the best process environment using finite-element analysis, the signal-noise ratio, and the Taguchi method for experiment design. The relative density and hydrostatic pressure of the final product were in accordance with the results of the finite element analysis. Therefore, we conclude that the Taguchi method can be applied to the design process of metal powder injection molding.