Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.1.1

Poly(ether block amide) (PEBA) Based Membranes for Carbon Dioxide Separation  

Lee, Jae Hun (Department of Chemical and Biomolecular Engineering, Yonsei University)
Patel, Rajkumar (Energy and Environmental Science and Engineering, Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University)
Publication Information
Membrane Journal / v.29, no.1, 2019 , pp. 1-10 More about this Journal
Abstract
Poly(ether block amide) (PEBA) is one of the commercially important class of block copolymer very much suitable specifically for $CO_2$ separation. Gas separation membrane need to have good mechanical strength as well as high gas permeability. The crystalline polyamide (PA) block provides the mechanical strength while the rubbery polyether (PE) group being $CO_2$-philic facilitate $CO_2$ permeation though the membrane. Composition of thermoplastic and rubbery phase in the polymer are changed to fit into suitable gas separation application. Although PEBA has good permeability, the selectivity of the membrane can be enhanced by incorporating molecular sieve without affection much the gas permeability. Mixed matrix membrane (MMM), a class of composite membrane combine the advantage of polymer matrix with the inorganic fillers. However, there are some disadvantages based on the compatibility of the inorganic fillers and polymeric phase. This review covers both the advantage and limitations of PEBA block copolymer based composite membrane.
Keywords
mixed matrix membrane; PEBA; permeability; selectivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Seoane, J. Coronas, I. Gascon, M. E. Benavides, O. Karvan, J. Caro, F. Kapteijn, and J. Gascon, "Metal-organic framework based mixed matrix membranes: A solution for highly efficient $CO_2$ capture?", Chem. Soc. Rev., 44, 2421 (2014).   DOI
2 A. Jamil, O. P. Ching, and A. B. M. Shariff, "Current status and future prospect of polymer-layered silicate mixed-matrix membranes for $CO_2/CH_4$ separation", Chem. Eng. Tech., 39, 1392 (2016).
3 T. S. Chung, L. Y. Jiang, Y. Li, and S. Kulprathipanja, "Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation", Prog. Polym. Sci., 32, 483 (2007).   DOI
4 A. E. Amooghin, S. Mashhadikhan, H. Sanaeepur, A. Moghadassi, T. Matsuura, and S. Ramakrishna, "Substantial breakthroughs on function-led design of advanced materials used in mixed matrix membranes (MMMs): A new horizon for efficient $CO_2$ separation", Prog Mat. Sci., 102, 222 (2019).   DOI
5 V. Bondar, B. Freeman, and I. Pinnau, "Gas transport properties of poly(Ether-B-Amide) segmented block copolymers", J. Polym. Sci. Part B: Polym. Phys., 38, 2051 (2000).   DOI
6 H. Rabiee, M. Soltanieh, S. A. Mousavi, and A. Ghadimi, "Improvement in $CO_2/H_2$ separation by fabrication of poly(Ether-B-Amide6)/glycerol triacetate gel membranes". J. Membr. Sci., 469, 43 (2014).   DOI
7 H. S. Faruque and C. Lacabanne, "Study of multiple relaxations in PEBAX, polyether block amide (PA12 2135 block PTMG 2032), copolymer using the thermally stimulated current method", Polymer, 27, 527 (1986).   DOI
8 N. Azizi, T. Mohammadi, and R. Mosayebi Behbahani, "Comparison of permeability performance of $PEBAX-1074/TiO_2$, $PEBAX-1074/SiO_2$ and $PEBAX-1074/Al_2O_3$ nanocomposite membranes for $CO_2/CH_4$ separation", Chem. Eng. Res. Des., 117, 177 (2017).   DOI
9 N. Azizi, T. Mohammadi, and R. M. Behbahani, "Synthesis of a PEBAX-1074/ZnO nanocomposite membrane with improved $CO_2$ separation performance", J. Energy Chem., 26, 454 (2017).   DOI
10 P. A. Gamali, A. Kazemi, R. Zadmard, M. J. Anjareghi, A. Rezakhani, R. Rahighi, and M. Madani, "Distinguished discriminatory separation of $CO_2$ from its methane-containing gas mixture via PEBAX mixed matrix membrane", Chin. J. Chem. Eng., 26, 73 (2018).   DOI
11 B. Yu, H. Cong, Z. Li, J. Tang, and X. S. Zhao, "Pebax-1657 nanocomposite membranes incorporated with nanoparticles/colloids/carbon nanotubes for $CO_2/N_2$ and $CO_2/H_2$ separation", J. Appl. Polym. Sci., 130, 2867 (2013).   DOI
12 M. M. Rahman, V. Filiz, S. Shishatskiy, C. Abetz, S. Neumann, S. Bolmer, M. M. Khan, and V. Abetz, "PEBAX$^{(R)}$ with PEG functionalized POSS as nanocomposite membranes for $CO_2$ separation", J. Membr. Sci., 437, 286 (2013).   DOI
13 W. Zhu, Y. Qin, Z. Wang, J. Zhang, R. Guo, and X. Li, "Incorporating the magnetic alignment of GO composites into Pebax matrix for gas separation", J. Energy Chem., https://doi.org/10.1016/j.jechem.2018.04.013 (2018).   DOI
14 G. Dong, J. Hou, J. Wang, Y. Zhang, V. Chen, and J. Liu, "Enhanced $CO_2/N_2$ separation by porous redu ced graphene oxide/Pebax mixed matrix membranes", J. Membr. Sci., 520, 860-868 (2016).   DOI
15 Y. Li and T. S. Chung, "Molecular-level mixed matrix membranes comprising Pebax$^{(R)}$ and POSS for hydrogen purification via preferential $CO_2$ removal", Int. J. Hydrogen Energy, 35, 10560 (2010).   DOI
16 M. M. Rahman, S. Shishatskiy, C. Abetz, P. Georgopanos, S. Neumann, M. M. Khan, V. Filiz, and V. Abetz, "Influence of temperature upon properties of tailor-made PEBAX$^{(R)}$ MH 1657 nanocomposite membranes for post-combustion $CO_2$ capture", J. Memrb. Sci., 469, 344 (2014).   DOI
17 T. Khosravi, M. Omidkhah, S. Kaliaguine, and D. Rodrigue, "Amine-functionalized CuBTC/poly(ether-b-amide-6) (Pebax$^{(R)}$ MH 1657) mixed matrix membranes for $CO_2/CH_4$ separation", Canadian J. Chem. Engg., 95, 2014 (2017).
18 O. G. Nik, X. Y. Chen, and S. Kaliaguine, "Functionalized metal organic framework-polyimide mixed matrix membranes for $CO_2/CH_4$ separation", J. Membr. Sci., 413, 48 (2012).   DOI
19 V. Nafisi and M. B. Hagg, "Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for $CO_2$ capture", J. Membr. Sci., 459, 244 (2014).   DOI
20 F. Dorosti and A. Alizadehdakhel, "Fabrication and investigation of PEBAX/Fe-BTC, a high permeable and $CO_2$ selective mixed matrix membrane", Chem. Eng. Res. Des., 136, 119 (2018).   DOI
21 J. Didden, R. Thur, A. Volodin, and I. F. J. Vankelecom, "Blending PPO-based molecules with Pebax MH 1657 in membranes for gas separation", J. Appl. Polym. Sci., 135, 46433 (2018).   DOI
22 E. G. Estahbanati, M. Omidkhah, and A. E. Amooghin, "Interfacial design of ternary mixed matrix membranes containing Pebax 1657/Silver-Nanopowder/[BMIM][BF4] for improved $CO_2$ separation performance", ACS Appl. Mater. Interfaces., 9, 10094 (2017).   DOI
23 A. Jomekian, B. Bazooyar, R. M. Behbahani, T. Mohammadi, and A. Kargari, "Ionic liquid-modified Pebax$^{(R)}$ 1657 membrane filled by ZIF-8 particles for separation of $CO_2$ from $CH_4$, $N_2$ and $H_2$", J. Membr. Sci., 524, 652 (2017).   DOI
24 A. R. Gholap, K. Venkatesan, T. Daniel, R. J. Lahoti, and K. V. Srinivasan, "Ultrasound promoted acetylation of alcohols in room temperature ionic liquid under ambient conditions", Green Chem., 5, 639 (2003).   DOI
25 H. Sanaeepur, R. Ahmadi, A. Ebadi Amooghin, and D. Ghanbari, "A novel ternary mixed matrix membrane containing glycerol-modified poly(ether-block-amide) (Pebax 1657)/copper nanoparticles for $CO_2$ separation", J. Membr. Sci., 573, 234 (2019).   DOI
26 J. E. Shin, S. K. Lee, Y. H. Cho, and H. B. Park, "Effect of PEG-MEA and graphene oxide additives on the performance of Pebax$^{(R)}$ 1657 mixed matrix membranes for $CO_2$ separation", J. Membr. Sci., 572, 300 (2019).   DOI
27 F. Karamouz, H. Maghsoudi, and R. Yegani, "Synthesis of high-performance Pebax$^{(R)}$-1074/DD3R mixed-matrix membranes for $CO_2/CH_4$ separation", Chem. Eng. Technol., 41, 1767 (2018).   DOI