DOI QR코드

DOI QR Code

Height Suppression of Cucumber and Tomato Plug Seedlings Using of Brushing Stimulus

브러싱 자극을 이용한 오이와 토마토 공정묘의 초장 억제

  • Kim, Hyeon Min (Division of Applied Life Science, Graduate School of Gyeongsang National University) ;
  • Lee, Hye Ri (Division of Applied Life Science, Graduate School of Gyeongsang National University) ;
  • Jeong, Hyeon Woo (Division of Applied Life Science, Graduate School of Gyeongsang National University) ;
  • Kim, Hye Min (Division of Applied Life Science, Graduate School of Gyeongsang National University) ;
  • Hwang, Seung Jae (Division of Applied Life Science, Graduate School of Gyeongsang National University)
  • 김현민 (경상대학교 대학원 응용생명과학부) ;
  • 이혜리 (경상대학교 대학원 응용생명과학부) ;
  • 정현우 (경상대학교 대학원 응용생명과학부) ;
  • 김혜민 (경상대학교 대학원 응용생명과학부) ;
  • 황승재 (경상대학교 대학원 응용생명과학부)
  • Received : 2018.08.17
  • Accepted : 2018.09.17
  • Published : 2018.10.30

Abstract

This study aimed to evaluate the effect of height suppression of cucumber and tomato plug seedlings as affected by mechanical stimulus using brushing as environment-friendly method. Cucumber (Cucumis sativus L. 'Joeunbaekdadagi') and tomato (Solanum lycopersicum L. 'Mini Chal') seeds were sown in 40-cell plug trays ($54{\times}27.5{\times}5cm$) filled with growing medium on Oct. 9, 2017. The cultivation environment in a venlo-type glasshouse was maintained as cultivation temperature range of $15-25^{\circ}C$ and the relative humidity of $50{\pm}10%$. Nontreatment and diniconazole ($7.5mg{\cdot}L^{-1}$) application at 15 days after sowing were used as the control. In addition, brushing treatments in cucumber and tomato were applied interval of 2, 4 or 6 hrs for 15 and 20 days, respectively. Plant height, hypocotyl length, and internode length were inhibited for cucumber and tomato in the diniconazole treatment than in the control. The leaf size was reduced, both cucumber and tomato, while the SPAD increased under the diniconazole treatment. However, stem diameter of cucumber was the thickest in the 2 hrs brushing interval treatment. Fresh weights of shoot and root were the significantly lowest in the diniconazole treatment. Application of brushing improved seedlings quality by promoting dry weights of shoot and root, and compactness of tomato seedlings. The chlorophyll fluorescence of tomato seedlings drastically decreased with 2 hrs treatment, indicating that mechanical stress by brushing treatment. The relative growth rate of tomato seedlings was significantly lower in the diniconazole treatment, but cucumber seedlings were not significantly different in all treatments. As a results, height suppression of cucumber and tomato seedlings was best achievement in the diniconazole treatment by the chemical as growth regulator. In an environment-friendly point of view, however, it is considered that 2 hrs brushing interval treatment can be the applicability for replacing the chemical methods in plug seedling growth of cucumber and tomato.

본 연구는 환경 친화적 방법인 브러싱을 이용한 기계적 자극의 영향을 받는 오이와 토마토 플러그 묘의 생육 억제 효과를 구명하기 위해 수행되었다. 오이(Cucumis sativus L. 'Joeunbaekdadagi')와 토마토(Solanum lycopersicum L. 'Mini Chal')를 2017년 10월 9일 상업용 혼합 상토가 충진된 40구 플러그 트레이($54{\times}27.5{\times}5cm$)에 파종하였다. 벤로형 유리온실의 재배환경은 $15-25^{\circ}C$의 재배 온도 범위와 $50{\pm}10%$의 상대습도를 유지하였다. 파종 15일후에, 오이와 토마토 묘에 무처리(대조구), $7.5mg{\cdot}L^{-1}$의 diniconazole을 처리하였다. 또한, 오이와 토마토의 brushing 처리는 2, 4, 또는 6시간 간격으로 각각 15일과 20일간 적용되었다. 1회씩 brushing 처리를 하였다. 오이와 토마토의 초장, 하배축, 절간장은 대조구에 비해 diniconazole 처리에서 억제되었다. 잎의 크기는 오이와 토마토 모두 감소하였지만, 반면에 엽록소 값은 diniconazole 처리에서 증가하였다. 그러나 오이의 경경은 2시간 brushing 간격 처리에서 가장 두꺼웠다. 지상부와 지하부의 생체중은 diniconazole 처리에서 유의적으로 낮았다. Brushing의 적용은 토마토 묘의 지상부와 지하부의 건물중, 충실도를 촉진시킴으로써 묘소질을 향상 시켰다. 토마토 묘의 엽록소 형광은 2시간 처리에서 급격히 감소하였으며, 이는 brushing 처리에 의한 기계적 스트레스를 나타낸다. 토마토 묘의 상대 생장률은 diniconazole 처리에서 유의적으로 낮았지만, 오이 묘는 모든 처리에서 유의적인 차이가 없었다. 결과적으로, 오이와 토마토 묘의 생육 억제는 생장조절제의 화학 물질에 의한 diniconazole 처리에서 가장 효과적이었다. 그러나 환경 친화적인 관점에서, 2시간의 brushing 간격 처리는 오이와 토마토 묘의 생장에서 화학적 방법을 대체할 수 있는 응용 가능성을 가지고 있다고 판단된다.

Keywords

References

  1. Ahmad, I., J.M. Dole, and B.E. Whipker. 2015. Paclobutrazol or uniconazole effects on ethylene sensitivity of potted ornamental plants and plugs. Scientia Horticulturae 192:350-356. https://doi.org/10.1016/j.scienta.2015.04.032
  2. Baden, S.A., and J.G. Latimer. 1992. An effective system for brushing vegetable transplants for height control. HortTechnology 2:412-414.
  3. Baker, N.R., and E. Rosenqvist. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Bot. 55:1607-1621. https://doi.org/10.1093/jxb/erh196
  4. Baninasab, B. 2009. Amelioration of chiling stress by paclobutrazol in watermelon seedlings. Scientia Horticulturae 121:144-148. https://doi.org/10.1016/j.scienta.2009.01.028
  5. Choi, S.H., J.S. Kang, Y.W. Choi, Y.J. Lee, Y.H. Park, M.R. Kim, B.G. Son, H.K. Kim, H.Y. Kim, W. Oh, H.B. Sim, K.B. Lim, and J.K. Kim. 2011. Effect of diniconazole on growth and flowering of Vinca rocea and Salvia splendis. J. Life Sci. 21:1004-1008 (in Korean). https://doi.org/10.5352/JLS.2011.21.7.1004
  6. Eum, S.J., K.I. Park, I.J. Lee, Y.J. Choi, W. Oh, and K.W. Kim. 2011. Effects of foliar-sprayed diniconazole on contents of endogenous gibberellic acids and abscisic acid in Lilium davuricum. Korean J. Hortic. Sci. Technol. 29:165-171 (in Korean).
  7. Genty, B., J.M. Briantais, and N.R. Baker. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990:87-92. https://doi.org/10.1016/S0304-4165(89)80016-9
  8. Goodman, A.M., and A.R. Ennos. 2001. The effects of mechanical stimulation on the morphology and mechanics of maize roots grown in an aerated nutrient solution. International J. Plant Sci. 162:691-696. https://doi.org/10.1086/320780
  9. Graham, T., and R. Wheeler. 2017. Mechanical stimulation modifies canopy architecture and improves volume utilization efficiency in bell pepper: implications for bioregenerative life-support and vertical farming. Open Agriculture 2:42-51.
  10. Hernandez, L.F. 2016. Wind as a mechanical stimulus affect the rate of early reproductive development in sunflower (Helianthus annuus L.). International J. Advanced Res. Bot. 2:14-24.
  11. Jaffe, M.J. 1973. Thigmomorphogenesis: the response of plant growth and development to mechanical stimulation. Planta (Berl.) 114:143-157. https://doi.org/10.1007/BF00387472
  12. Jeong, B.R. 2002. Current status and problems in the transplant production of floral crops. Korean J. Hortic. Sci. Technol. 20:197-204 (in Korean).
  13. Kim, H.C., Y.H. Cho, Y.G. Ku, S.J. Hwang, and J.H. Bae. 2016. Growth characteristics of grafted tomato seedlings following treatment with various concentrations of diniconazole during the summer growth season. Korean J. Hortic. Sci. Technol. 34:249-256 (in Korean).
  14. Kim, Y.H., and I.J. Lee. 2015. Identification of appropriate plant growth retardant to suppress poinsettia growth. Flower Res. J. 23:63-71 (in Korean). https://doi.org/10.11623/frj.2015.23.2.15
  15. Latimer, J.G., and R.D. Oetting. 1994. Brushing reduces thrips and aphid populations on some greenhouse-grown vegetable transplants. HortScience 29:1279-1281. https://doi.org/10.21273/HORTSCI.29.11.1279
  16. Lee, J.E., Y.S. Shin, H.W. Do, J.D. Cheung, and Y.H. Kang. 2016. Effect of seedling quality and growth after transplanting of Korean melon nursed under LED light sources and intensity. Protected Hort. Plant Fac. 25:294-301 (in Korean). https://doi.org/10.12791/KSBEC.2016.25.4.294
  17. Moon, J.H., Y.A. Jang, H.K. Yun, S.G. Lee, and J.W. Lee. 2010. Determination of salt type, salt concentration, and salt application method and timing for suppression of stem elongation in grafted cucumber seedlings. J. Bio-Environ. Control 19:317-323 (in Korean).
  18. Morel, P., L. Crespel, G. Galopin, and B. Moulia. 2012. Effect of mechanical stimulation on the growth and branching of garden rose. Scientia Horticulturae 135:59-64. https://doi.org/10.1016/j.scienta.2011.12.007
  19. Nelson, P.V. 1991. Greenhouse operation and management. 4th Ed. Prentice Hall, Englewood Cliffs. NJ.
  20. Nkansah, G.O., and T. Ito. 1994. Comparative studies on growth and development of heat-tolerant and non heat-tolerant tomato plants grown at different root-zone temperatures. J. Japan Soc. Hortic. Sci. 62:775-780. https://doi.org/10.2503/jjshs.62.775
  21. Porter, B.W., Y.J. Zhu, D.T. Webb, and D.A. Christopher. 2009. Novel thigmomorphogenetic responses in Carica papaya: touch decreases anthocyanin levels and stimulates petiole cork outgrowths. Annals of Bot. 103:847-858. https://doi.org/10.1093/aob/mcp009
  22. Rural Development Administration (RDA). 2012. Analysis standard for research in agricultural science and technology. pp. 503-504 (in Korean).
  23. Samimy, C. 1993. Physical impedance retards top growth of tomato transplants. HortScience 28:883-885. https://doi.org/10.21273/HORTSCI.28.9.883
  24. Seiler, J.R., and J.D. Johnson. 1988. Physiological and morphological responses of three half-sib families of loblolly pine to water-stress conditioning. Forest Sci. 34:487-495.
  25. Song, L., W.S. Chow, L. Sun, C. Li, and C. Peng. 2010. Acclimation of photosystem II to high temperature in two Wedelia species from differnet geographical origins: implications for biological invasions upon global warming. J. Exp. Bot. 61:4087-4096. https://doi.org/10.1093/jxb/erq220
  26. Sonneveld, C., and N. Straver. 1994. Nutrient solutions for vegetable and flowers grown in water or substrates. 8th ed. Proefstation voor tuinbouw onder glas te Naaldiwijk. no. 8, Holland, pp. 14-23.
  27. Strang, E.J., and G.G. Weis. 1984. Influence of paclobutrazol plant growth regulator on strawberry plant growth, fruiting, and runner suppression. HortScience 19:643-645.
  28. Sun, E.S., H.M. Kang, Y.S. Kim, and I.S. Kim. 2010. Effects of seed soaking treatment of diniconazol on the inhibition of stretching of tomato and cucumber seedlings. J. Bio-Environ. Control 19:55-62 (in Korean).
  29. Vu, N.T., H.M. Kang, Y.S. Kim, K.Y. Choi, and I.S. Kim. 2015. Growth, physiology, and abiotic stress response to abscisic acid in tomato seedlings. Hort. Environ. Biotechnol. 56:294-304. https://doi.org/10.1007/s13580-015-0106-1
  30. Wample, R.L., and E.B. Culver. 1983. The influence of paclobutrozol, a new growth regulator, on sunflowers. J. Amer. Soc. Hort. Sci. 108:122-125.
  31. Wang, Y.H., M. Dong, F.H. Yu, H. Jiang, S.Q. Yu, X.Q. Lin, and W.M. He. 2011. Mechanical shaking and soil water affect the growth of Psammochloa villosa in the Mu Us Sandland. J. Arid Environ. 75:974-977. https://doi.org/10.1016/j.jaridenv.2011.04.019
  32. Yun, H.K., T.C. Seo, J.W. Lee, and E.Y. Yang. 2007. Effect of triazole growth regulator treatment on the growth of plug seedling and yield of tomato. J. Bio-Environ. Con. 16:205-209 (in Korean).
  33. Zhang, C.H., I.J. Chun, Y.C. Park, and I.S. Kim. 2003. Effect of timings and light intensities of supplemental red light on the growth characteristics of cucumber and tomato plug seedlings. J. Bio-Environ. Con. 12:173-179 (in Korean).