• 제목/요약/키워드: 금속 호일

검색결과 810건 처리시간 0.029초

원전 금속파편감시설비 개발

  • 이용호
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 추계학술발표회논문집(1)
    • /
    • pp.284-289
    • /
    • 1997
  • 원자력발전소 금속파편감시계통(LPMS : Loose Parts Monitoring System)은 내각재계통 내부에 존재하는 금속파편물을 조기에 탐지하여 관련 구조물 파손을 방지하므로써 불필요한 검사 및 보수로 인한 작업자 방사선 피폭를 최소화하며 원전 안전성 및 경제성을 제고시킨다. 현재 국내 원전에서 가동중인 금속파편감시설비중 영광 1,2호기와 고리 3,4호기에서 운영중인 Westinghouse사의 금속파편감시설비(상품명: Digital Matal Impact Monitoring System)는 70년대에 개발되어 설치된 설비로 기능의 낙후와 장기간 운영에 따른 노후화로 인해 발생될 수 있는 문제점을 방지하고자 하드웨어 및 금속충격파 검출 및 판별 알고리즘을 개발하여 영광 1,2호기에서 기존 설비와 병렬운전중이다.

  • PDF

레이저 유도 충격파를 이용한 첨단 약물전달시스템 개발 (New Drug Delivery System Based on a Laser-Induced Shockwave)

  • 한태희;이현희;;여재익
    • 대한기계학회논문집B
    • /
    • 제34권1호
    • /
    • pp.67-71
    • /
    • 2010
  • 1 GW/$cm^2$ 이상의 고강도의 레이저 빔을 얇은 금속 호일의 한 점에 집중시키면, 레이저 삭마현상에 의해 발생된 충격파가 금속 호일 안으로 전파하게 된다. 이 충격파는 금속 호일의 반대 면에서 팽창파로 반사되고, 그 과정에서 금속 호일에 급격한 변형이 일어난다. 이 때, 금속 호일의 반대 면에 미세한 마이크로 단위 크기의 입자들을 코팅하면, 금속의 순간적인 변형으로 인해 입자들이 큰 운동량을 얻으며 가속되어 빠른 속도로 튕겨져 나가게 되는데 이것이 바이오리스틱 약물 전달의 원리이다. 이번 연구에서는 바이오리스틱 시스템의 제어성, 안정성, 효율을 향상시키고자 컨파인 조건을 변화시키며, 인체의 연한 조직을 모사하는 3% 젤라틴 용액으로의 침투 모습을 파악하였다. 사용한 컨파인 매질은 BK7 유리, 물, 그리고 초음파젤(RHAPAPHRM Co. Ltd)이다. 실험결과, 컨파인 매질과 그 두께를 조절함으로써 마이크로 입자들의 침투 양상을 제어할 수 있음을 확인하였다.

고체연료전지용 금속접속자의 내산화막 제조 (Preparation of Protective Oxidation Layer of Metallic Interconnector for Solid Oxide Fuel Cells)

  • 김상우;이병호;이종호
    • 한국세라믹학회지
    • /
    • 제37권9호
    • /
    • pp.887-893
    • /
    • 2000
  • 중온형 고체산화물 연료전지용 금속접속자로서의 적용가능성을 알아보기 위하여 내산화막을 코팅한 Ferritic 스틸의 산화특성을 연구하였다. Ferritic 스틸은 고온산화로 형성된 산화크롬, 산화철막에 의해 시간에 따라 저항이 크게 증가함을 보였다. 반면, LMO 코팅한 Ferritic 스틸은 Ducrolloy와 같이 고온저항이 주기적인 증감을 보이면서 증가하지만 내산화막의 형성에 의해 80시간 이후에는 저항증가가 없어 정기 산화안정성을 보였다.

  • PDF

시화호 코어 퇴적물 내 미량금속 분포 특성 및 오염 평가 (Distribution and Pollution Assessment of Trace Metals in Core Sediments from the Artificial Lake Shihwa, Korea)

  • 나공태;김은수;김종근;김경태;이정무;김의열
    • Ocean and Polar Research
    • /
    • 제35권2호
    • /
    • pp.69-83
    • /
    • 2013
  • 시화호 내측 퇴적물 내 미량속의 오염원을 규명, 퇴적물 내 미량금속의 분포 특성 및 오염도를 평가하기 위하여 시화호 유역의 하천수, 반월산업단지 토구 유출수 및 코어 퇴적물 내 미량금속을 분석하였다. 하천수 및 반월산업단지 토구 유출수 내 용존성 미량금속의 평균농도는 시화호 내측 표층수에 비해 6.6~136배 높았으며, 산업단지 유역의 하천이 도심 또는 농업 유역에 비해 상대적으로 높은 농도를 보이고 있어 시화호 내측 미량금속의 주요한 오염원은 시화호 유역에 산재하는 하천과 반월산업단지 토구인 것을 알 수 있었다. 미량금속의 수직분포는 저층에서 표층으로 갈수록 농도가 증가하고 있으며 반월산업단지 인근 지역에서 미량금속의 농도가 매우 높은 것으로 나타났다. 농집지수(geo-accumulation index)를 이용한 퇴적물 내 미량금속의 오염도 평가는 산업단지 인근이 다른 조사지역에 비해 상대적으로 오염되었으며 특히 Cu, Zn 및 Cd의 오염도가 매우 심각한 수준으로 나타났다. 우리나라 해저퇴적물의 주의기준(TEL)과 관리기준(PEL)과의 비교를 통하여 퇴적물 내 미량금속 농도가 해양생물에 미치는 영향 및 독성을 파악한 결과, 반월산업단지 인근 지역에서 Cu, Zn, Cd 및 Pb이 PEL을 초과하였으며 Cr과 Ni 역시 외국의 PEL을 초과하는 것으로 나타났다. 본 연구에서 mPELQ를 이용하여 퇴적물 기준이 존재하는 미량 금속의 종합적인 독성 영향을 평가하였다. mPELQ의 평균은 0.2~2.3의 범위를 나타내었으며 산업단지 인근인 C2와 C3 코어 퇴적물에서의 미량금속 농도가 저서생태계에 대한 독성영향이 우려할 만한 수준으로 나타났다.

아크로를 이용한 실리콘 환원 반응의 열역학적 해석 (Thermodynamic Analysis of Silicon Reduction Reaction in Arc Furnace)

  • 박동호;김대석;이상욱;문병문;류태우
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.70.2-70.2
    • /
    • 2010
  • 고순도 금속규소는 반도체, 태양전지 및 규소화 화합물 등의 원료로 사용되어왔으며, 최근 태양전지 시장 확대로 인해 고순도 금속규소의 수요가 증가하고 있다. 그러나 전량 수입 중인 고순도 금속규소의 수급 안정성과 품질 균일성 등이 문제가 되고 있어, 고순도 생산 공정 및 생산 에너지를 절감 공정에 관한 연구 개발이 필요한 실정이다. 이에 본 연구에서는 금속규소의 원료인 규석(SiO2)과 카본(C)의 환원반응을 온도와 압력별로 살펴보고, 평형 상태의 금속규소수율 조건을 알아보았다. 그리고 아크로 내부 위치에 따른 산화/환원 반응식을 고찰하여 주요 반응식의 깁스 자유 에너지를 비교 분석 하였다. 본 해석을 통한 실험용 아크로 제작과 기초실험을 통해 금속 규소 생산 수율 및 순도를 평가하였으며, 생산된 실리콘의 최대 순도는 약 99.8%로 측정되었다.

  • PDF

달성 광산(鑛山)에서 채취(採取)한 혼합(混合) 호산성 균주를 이용(利用)한 폐리튬 밧데리의 바이오 침출(浸出) (Bio-dissolution of waste of lithium battery industries using mixed acidophilic microorganisms isolated from Dalsung mine)

  • ;김동진;안종관
    • 자원리싸이클링
    • /
    • 제17권2호
    • /
    • pp.30-35
    • /
    • 2008
  • 혼합 호산성 박테리아를 이용하여 리튬이온 밧데리 산업 폐기물로부터 코발트와 리튬의 침출을 연구하였다. 혼합 호산성 박테리아의 성장기질은 단체 황 및 2가 철이온으로 구성되어 있으며 미생물에 의한 금속의 침출은 폐기물에 존재하는 금속과 황산이온의 양자 반응 때문에 일어난다. 본 연구에서 12일간 미생물 침출반응시 고상 폐기물중 코발트의 80%, 리튬의 20%가 용해되었으며 고액비가 높을수록 금속의 독성으로 인하여 미생물의 성장은 억제된다. 단체 황의 농도가 높을 조건에서는 일부 황 분말이 용해되지 않으며 금속의 침출속도는 황의 증가에 따라 감소한다.