• Title/Summary/Keyword: 금속리싸이클링

Search Result 387, Processing Time 0.027 seconds

Overview and Recent Development of Recycling Waste Refrigerators (폐(廢) 냉장고(冷藏庫) 재활용(再活用) 현황(現況)과 기술(技術) 전망(展望))

  • Yang, Hyunseok;Kim, Geon-Hong;Kong, Man-Sik;Park, Kiejin;Lee, Gwang Weon;Kim, Bo Saeng
    • Resources Recycling
    • /
    • v.22 no.4
    • /
    • pp.70-80
    • /
    • 2013
  • Waste refrigerator is the most large amount of item being recycled and the recycling process is the most complicated in WEEE (Waste Electrical and Electronic Equipment) because refrigerator is biggest product and consists of various parts and materials such as ferrous, non-ferrous, and plastics. Recently, recycling process of waste refrigerator has been being more complex since large capacity 2 door refrigerators and standing Kimchi refrigerators with various material are distributed on custom market. In addition, recycling of valuable resource from waste refrigerator is mandatory by WEEEs recycling legislation; therefore, high efficiency recycling enough for economic and environment-friendly recovery of valuable resource through present technical situation analysis and comparison of recycling technologies of waste refrigerator with advanced country.

Recovery of Silver Using Cyclone Type Electrolytic Cell from Thiourea-hydrochloric Acid Mixed Solutions (티오요소와 염산 혼합 용액에서 사이클론 전해에 의한 은(Ag) 회수)

  • Cho, Yeon-Chul;So, Hong-Il;Lee, Joo-eun;Ahn, Jae-Woo;Ryu, Ho-Jin
    • Resources Recycling
    • /
    • v.26 no.4
    • /
    • pp.62-70
    • /
    • 2017
  • A cyclone type electrolytic method was used to recover silver from thiourea-hydrochloric acid mixed solutions. The electrowinning behavior of silver was investigated in different systems, such as the flow rate, current density, silver concentration, thiourea concentration and hydrochloric acid concentration. As the increase of the flow rate, current density and hydrochloric acid concentration, the recovery rate of silver was increased. Whereas, as the increase of silver concentration, the recovery rate of silver was decreased. The thiourea concentration did not affect the Ag recovery and current efficiency. Above 99% of Ag was recovered at the flow rate of 12 L/min., current density of $0.75A/dm^2$, silver concentration of 1.0 g/L, 0.5 M thiourea and 0.1 M hydrochloric acid. In most experimental conditions, silver was recovered as a powder form.

Measurement of Carbon Concentration and Dissolution Ratio in Molten Steel by the Mixing Conditions of Carbon Materials Using Coffee Grounds (커피박을 활용한 탄재 혼합 조건에 따른 용강 내 탄소의 농도 및 용해 효율 측정)

  • Kim, Gyu-Wan;Ryu, Geun-Yong;Kim, Sun-Joong
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.77-82
    • /
    • 2021
  • Reduction of CO2 emissions is an important issue in the steel industry, and the research on carbon materials that can partially replace cokes is necessary to reduce CO2 emissions. Meanwhile, the biomass fuel contains some fixed carbon, and the carbon content in the biomass can be increased by torrefaction. As one of the biomass fuels, coffee grounds contains about 55 mass% of carbon, and its about 270,000 tons are landfilled and incinerated annually in Korea. In addition, research on the recycling process due to the increase in annual coffee consumption is required. In this study, the effect of temperature on the concentration of fixed carbon in coffee grounds was investigated during torrefaction. Moreover, the effects of mixing ratio of torrefied coffee grounds with cokes on the carbon concentration and dissolution efficiency in the metal sample were investigated.

Oversea Production Status of Gold, Silver, Platinum and Palladium from Scrap (스크랩으로부터 금, 은, 백금, 팔라듐 해외생산현황)

  • Kim, Bum-Choong;Chae, Sujin;Kim, Jinsoo;Yoo, Kyoungkeun
    • Resources Recycling
    • /
    • v.27 no.6
    • /
    • pp.76-83
    • /
    • 2018
  • This article aims to summarize the scrap recycling status of gold, silver, platinum and palladium from foreign countries by courntires and industries in order to utilize the data for securing the raw materials of the domestic urbanmining industry. The amount of gold from scrap has shown a tendency to decrease in countries other than China, which is attributed to the large imports of scrap containing gold in China. The industry demand for gold is the highest in electronic products, but demand is decreasing. The amount of scrap recycling in silver has declined in other regions compared to those in Europe, indicating that the world's overall scrap recycling volume has declined. Production and demand from scrap of platinum and palladium are mostly for catalysts and have been steadily increasing until now. However, it is expected that the amount of waste catalysts in automobiles will decrease with the increase of electric vehicle use.

The Status of Domestic and International Quality Standards for Recycled Nickel Sulfate and Comparison of Electroplating Performance Between Reagent and Recycled Products (재활용 황산니켈의 국내·외 품질기준현황 및 생산제품의 전해도금 성능 비교)

  • Park, Sung Cheol;Kim, Yong Hwan;Shin, Ho Jung;Lee, Man Seung;Son, Seong Ho
    • Resources Recycling
    • /
    • v.30 no.3
    • /
    • pp.55-62
    • /
    • 2021
  • In Korea, a good recycled product (GR) certification system was introduced in 1997 to improve resource and energy use efficiency. However, in industry and society, recycled products are not used well because of the lack of awareness of recycled materials. In this study, the status of domestic and international quality standards for nickel materials was investigated, and the purity and electrochemical properties of nickel sulfate prepared from ore and nickel sulfate recovered from waste lithium-ion batteries were evaluated during the electroplating process. As a result of the test, it was found that there is no quality difference between recycled nickel sulfate and high-purity nickel sulfate reagents when used in the electroplating industry.

A Cross-check of Domestic Lead Material Flow in Public Database Sets for the Recycling Status Analysis (재활용 현황파악을 위한 공공 자료별 국내 납 물질 흐름 상호 확인)

  • Lee, Sang-hun;Kim, Jungeun
    • Resources Recycling
    • /
    • v.30 no.3
    • /
    • pp.63-69
    • /
    • 2021
  • Supply deficit of lead commodities and environmental pollution can be simultaneously resolved through the recovery and recycling of waste lead. The recent recovery of lead through recycling of the lead battery waste is a positive development. To maximize the effect of lead recovery and recycling in the future, the updated status of the lead material flow should be recognized. However, such an analysis at the preliminary stages may be cumbersome owing to the complexity and diversity of emission sources and material streams. At this stage, a preliminary screening by domestic lead flow using public information should be feasible. Therefore, in this study, using the data from the UN Comtrade and domestic PRTR (Pollutant Release and Transfer Register) databases, the amounts of lead import, emission, and transfer were identified and cross-checked with the domestic lead flow described in the National Material Flow Analysis database. The lead flow for major categories such as waste lead-acid batteries showed a rough consistency between the databases.

Waste and Recycling Status of Europe, Japan and USA (유럽, 일본, 미국의 폐기물 및 재활용 현황)

  • LEE, Sang-hun;YOO, Kyoungkeun
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.92-101
    • /
    • 2021
  • The status of waste generation and recycling in 32 countries in the European Union (EU), Japan, and the United States was investigated and summarized to encourage overseas market expansion for domestic urban mining industries. Among the 32 EU countries, Germany has the highest amount of material consumption and generates the largest quantity of waste. Minerals such as mine and soil wastes constitute the largest type of waste in the EU. With respect to waste treatment techniques, landfill and recycling are applied to 39% and 38% of the waste, respectively, implying the necessity to promote recycling. Japan's total waste generation declined recently to less than 400 million tons. The largest amount of waste is generated by the manufacturing industries. The proportion of total recycled waste is estimated to be slightly over 50%, but the proportions are greater than 90% for metal scrap and 60% for waste plastics. The amount of waste produced in the United States recently exceeded 265 million tons; 52.1% of the waste is landfilled, while only 25.1% is recycled. Therefore, the recycling industry has to be developed further.

Overview on Pyrometallurgical Recycling Process of Spent Lithium-ion Battery (건식 공정을 통한 리튬이차전지의 재활용 연구 동향)

  • Park, Eunmi;Han, Chulwoong;Son, Seong Ho;Lee, Man Seung;Kim, Yong Hwan
    • Resources Recycling
    • /
    • v.31 no.3
    • /
    • pp.27-39
    • /
    • 2022
  • The global demand for lithium-ion batteries (LIBs) has been continuously increasing since the 1990s along with the growth of the portable electronic device market. Of late, the rapid growth of the electric vehicle market has further accelerated the demand for LIBs. The demand for the LIBs is expected to surpass the supply of lithium from natural resources in the near future, posing a risk to the global lithium supply chain. Moreover, the continuous accumulation of end-of-life LIBs is expected to cause serious environmental problems. To solve these problems, recycling the spent LIBs must be viewed as a critical technological challenge that must be urgently addressed. In this study, recycling LIBs using pyrometallurgical processes and post-processes for efficient lithium recovery are briefly reviewed along with the major accomplishments in the field and current challenges.

A Study on the Industrial Economic-Importance Index of Minerals in Korea (한국의 광물자원 산업적 경제중요도 지수 산정 연구)

  • Yujeong Kim
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.60-66
    • /
    • 2023
  • As supply chain management becomes a key factor in the sustainable growth of the industry, securing minerals at the national or corporate level is becoming important. Depending on the industrial structure, the economic status of each minerals is different and the supply risk is different In this study, to examine the economic status of minerals, an index that can quantify the Industrial Economic Importance by minerals was developed and calculated by reflecting the demand structure and cost weight of each industry. As a result, Li, Al, Cu, Si, Co, Ni, etc. were evaluated as having high industrial importance in Korea. In addition, by industry, Al, Cu, Zn, and Pb for primary metal manufacturing, general machinery, assembly metals,Sn, Ba, Ti, Si and Ga for precision equipment, Si and Ga for semiconductors, and Li, Ni, Co, Si, etc. for electronic components had high industrial importance. Such as Europe and the United States, in order to select Critical-minerals, Korea will need to analyze the economic impact on the domestic industry as well as the risks of supply chain by minerals.

Evaluation of Basic Beneficiation Characteristics for Optimizing Molybdenum Ore Flotation Process (몰리브덴광 부유선별 공정 최적화를 위한 기초 선광 특성 평가)

  • Seongsoo Han;Joobeom Seo
    • Resources Recycling
    • /
    • v.33 no.2
    • /
    • pp.37-45
    • /
    • 2024
  • Molybdenum is used in various industries because of its high heat and corrosion resistance. It was selected as a critical mineral in Korea. However, there have been recent challenges in production because of the increased depth and decreased grade of molybdenum veins. Consequently, it is necessary to enhance the effectiveness of the molybdenum beneficiation process. In this study, a basic evaluation of beneficiation characteristics was conducted to enhance the effectiveness of the domestic molybdenum ore beneficiation process. The properties of the beneficiation process were assessed using mineralogical analysis, work index, and flotation kinetics. The results revealed that the allowable particle size of the molybdenum ore for liberation was ~100 ㎛. In addition, the work index was calculated to be 14.57 kWh/t. The operating conditions in the flotation units were achieved by determining the optimal flotation time for each process based on flotation kinetics. Finally, the characteristics of molybdenum ore beneficiation provided in this study can be utilized to diagnose the grinding and flotation processes of large-scale molybdenum beneficiation plants.