DOI QR코드

DOI QR Code

Waste and Recycling Status of Europe, Japan and USA

유럽, 일본, 미국의 폐기물 및 재활용 현황

  • LEE, Sang-hun (Department of Environmental Science, Keimyung University) ;
  • YOO, Kyoungkeun (Department of Energy and Resources Engineering, Korea Maritime and Ocean University)
  • 이상훈 (계명대학교 환경학부 환경과학전공) ;
  • 유경근 (한국해양대학교 에너지자원공학과)
  • Received : 2020.12.04
  • Accepted : 2021.01.19
  • Published : 2021.02.28

Abstract

The status of waste generation and recycling in 32 countries in the European Union (EU), Japan, and the United States was investigated and summarized to encourage overseas market expansion for domestic urban mining industries. Among the 32 EU countries, Germany has the highest amount of material consumption and generates the largest quantity of waste. Minerals such as mine and soil wastes constitute the largest type of waste in the EU. With respect to waste treatment techniques, landfill and recycling are applied to 39% and 38% of the waste, respectively, implying the necessity to promote recycling. Japan's total waste generation declined recently to less than 400 million tons. The largest amount of waste is generated by the manufacturing industries. The proportion of total recycled waste is estimated to be slightly over 50%, but the proportions are greater than 90% for metal scrap and 60% for waste plastics. The amount of waste produced in the United States recently exceeded 265 million tons; 52.1% of the waste is landfilled, while only 25.1% is recycled. Therefore, the recycling industry has to be developed further.

국내 도시광산업체의 해외진출을 장려하기 위해 유럽 32개국과 일본, 미국의 폐기물 발생 및 재활용 현황을 정리하였다. 그 결과 EU(European Union) 32개국 중 독일의 물질소비량과 폐기물 발생량이 가장 많았고, EU의 폐기물 조성 중 광산폐기물이나 흙 등 무기물이 가장 많은 부분을 차지하고 있었다. 폐기물 처리방법으로서 매립과 재활용이 각각 39%와 38%으로 아직까지 재활용할 여지가 많은 것으로 판단되었다. 일본의 전체 폐기물 발생은 최근 4억톤 이하로 감소하고 있는 추세이며, 제조업에서 가장 많은 폐기물이 발생하였다. 폐기물 중 재활용되는 비율은 50%를 조금 넘는 수준이나, 금속스크랩의 경우 90%를 상회하고 있으며, 폐플라스틱의 경우 60%로 나타났다. 미국의 폐기물발생량은 최근 2억6천5백만톤을 상회하고 있으며, 폐기물 중 52.1%가 매립되고 있고 재활용은 25.1%정도에 불과하여 향후 재활용산업에 진출할 여지가 높다고 판단된다.

Keywords

References

  1. Kim, D., Kim, Y., 2020 : Implications of the 6th National Program for Overseas Resources Development, J. Korean Soc. Miner. Energy Resour. Eng., 57(4), pp.392-397. https://doi.org/10.32390/ksmer.2020.57.4.392
  2. Kim, B., Chae, S., Kim, J., et al., 2018 : Oversea Production Status of Gold, Silver, Platinum and Palladium from Scrap, J. of Korean Inst. of Resources Recycling, 27(6), pp.76-83. https://doi.org/10.7844/KIRR.2018.27.6.76
  3. Kim, B., Kim, J., Yoo, K., 2019 : Recycling Status of Gold, Silver, Platinum and Palladium, J. Korean Soc. Miner. Energy Resour. Eng., 56(4), pp.359-366. https://doi.org/10.32390/ksmer.2019.56.4.359
  4. Kim, S.-K., 2010 : The Main Contents of the Countermeasures for Recycling of Used Metal Resources, J. of Korean Inst. of Resources Recycling, 19(4), pp.3-12.
  5. Cho, B.G., Cho, Y.J., Lee, J.C., et al., 2019: Korea's Metal Resources Recycling Research Project - Valuable Recycling, Geosystem Engineering, 22(1), pp.48-58. https://doi.org/10.1080/12269328.2018.1488626
  6. Kim, Y.-C., Kang, H.-Y., 2017 : Status and Strategy on Recycling of Domestic Used Chemical Catalysts, J. of Korean Inst. of Resources Recycling, 26(3), pp.3-16. https://doi.org/10.7844/kirr.2017.26.3.3
  7. Kwon, Y.-S., Lee, J.-c., Shin, D. Y., et al., 2014 : A Review on Recycling of Spent Autocatalyst in Korea, J. of Korean Inst. of Resources Recycling, 23(1), pp.3-16. https://doi.org/10.7844/kirr.2014.23.1.3
  8. Park, H., Shin, S., 2014 : Current Status of Domestic Recycling of Used Metallic Can, J. of Korean Inst. of Resources Recycling, 23(5), pp.62-67. https://doi.org/10.7844/kirr.2014.23.5.62
  9. Ahn, H., Kang, L., Lee, C.-G., 2017 : Analysis of Commercial Recycling Techcnology and Research Trend of Printed Circuit Boards in Korea, J. of Korean Inst. of Resources Recycling, 26(4), pp.9-18. https://doi.org/10.7844/kirr.2017.26.4.9
  10. Oh J.-H., 2014 : Improvement of ELV Recycling Technology - Focused on Achivement of ELV Recycling Rate 95%, J. of Korean Inst. of Resources Recycling, 23(2), pp.71-80. https://doi.org/10.7844/kirr.2014.23.2.71
  11. Jung, I., Park, J., Hwang, J., et al., 2015 : Overview and Recent Development of Recycling Small Waste Electrical and Electronic Equipment (WEEE), J. of Korean Inst. of Resources Recycling, 24(4), pp.38-49. https://doi.org/10.7844/kirr.2015.24.4.38
  12. Park, H., Sohn, H., 2015 : Current Status on the Recycling of Domestic Major Non-ferrous Metal Scraps, J. of Korean Inst. of Resources Recycling, 24(5), pp.72-79. https://doi.org/10.7844/kirr.2015.24.5.72
  13. Lee, H. S., Woo, J.-H., Lee, J.-c., 2014 : The Activation Plan of Resource Circulation of Copper through Analysis of Waste Resources Circulation Flow, J. of Korean Inst. of Resources Recycling, 23(2), pp.26-36. https://doi.org/10.7844/kirr.2014.23.2.26
  14. Lee, H. S., Lee, J., Yi, S., 2018 : Resource Circulation Plan Using Material Flow Analysis of Waste Metals of Cobalt and Palladium, J. of Korean Inst. of Resources Recycling, 27(1), pp.14-21. https://doi.org/10.7844/kirr.2018.27.1.14
  15. Eurostat, Generation of Waste by Waste Category, https://ec.europa.eu/eurostat/databrowser/view/env_wasgen/default/table?lang=en, Nov. 29, 2020.