DOI QR코드

DOI QR Code

몰리브덴광 부유선별 공정 최적화를 위한 기초 선광 특성 평가

Evaluation of Basic Beneficiation Characteristics for Optimizing Molybdenum Ore Flotation Process

  • 한성수 (한국지질자원연구원 자원활용연구본부 자원회수연구센터) ;
  • 서주범 (한국지질자원연구원 자원활용연구본부 자원회수연구센터)
  • Seongsoo Han (Mineral processing and metallurgy research center, Resource Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Joobeom Seo (Mineral processing and metallurgy research center, Resource Utilization Division, Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • 투고 : 2024.02.05
  • 심사 : 2024.03.13
  • 발행 : 2024.04.30

초록

몰리브덴은 높은 내열성, 내부식성에 의해 다양한 산업에 적용되어, 우리나라의 핵심광물로 선정된 중요한 금속이다. 그러나 최근 몰리브덴 광맥의 저품위화로 인해 생산에 어려움을 겪고 있어, 몰리브덴 선광 공정에 대한 효율 향상이 필요하다. 본 연구에서는 국내 몰리브덴광 선광 공정의 효율 향상을 위한 기초 선광 특성 평가 연구를 수행하였다. 기초 선광 특성은 광물학적 분석, 분쇄일지수, 부유선별 속도 분석으로 평가되었다. 분석 결과, 단체분리가 가능한 몰리브덴광의 입자 크기는 ~100 ㎛였으며, 분쇄 일지수는 14.57 kWh/t로 산출되었다. 또한 부유선별 속도 분석을 통해, 부유선별 단위 공정 각각의 최적 부유선별 시간을 제공함으로써 최적화를 위한 운영 조건을 확립하였다. 마지막으로 본 연구에서 제공한 몰리브덴광 기초 선광 특성 정보는 향후 산업 규모의 몰리브덴 선광 플랜트의 분쇄 및 부유선별 공정을 진단하는 데 활용될 예정이다.

Molybdenum is used in various industries because of its high heat and corrosion resistance. It was selected as a critical mineral in Korea. However, there have been recent challenges in production because of the increased depth and decreased grade of molybdenum veins. Consequently, it is necessary to enhance the effectiveness of the molybdenum beneficiation process. In this study, a basic evaluation of beneficiation characteristics was conducted to enhance the effectiveness of the domestic molybdenum ore beneficiation process. The properties of the beneficiation process were assessed using mineralogical analysis, work index, and flotation kinetics. The results revealed that the allowable particle size of the molybdenum ore for liberation was ~100 ㎛. In addition, the work index was calculated to be 14.57 kWh/t. The operating conditions in the flotation units were achieved by determining the optimal flotation time for each process based on flotation kinetics. Finally, the characteristics of molybdenum ore beneficiation provided in this study can be utilized to diagnose the grinding and flotation processes of large-scale molybdenum beneficiation plants.

키워드

과제정보

본 연구는 한국지질자원연구원 주요사업인 '국내 부존 바나듐(V) 광물자원 선광/제련/활용기술 개발(GP2020-013, 24-3212)과 'K-배터리 원료광물(Ni, Co) 잠재성 평가 및 활용기술 개발(GP2023-004, 24-3215)' 과제, 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 일환으로 수행되었습니다(No. 20227A10100030).

참고문헌

  1. Braithwaite, E. R., Haber, J., 2013 : Molybdenum: an outline of its chemistry and uses, pp.1-87, Elsevier, Amsterdam. 
  2. Shields, J. A., 2013 : Applications of molybdenum metal and its alloys; International Molybdenum Association, pp.3-14, IMOA, London. 
  3. Yi, G., Macha, E., Van Dyke, J., et al., 2021 : Recent progress on research of molybdenite flotation: A review, Advances in Colloid and Interface Science, 295, 102466. 
  4. Jeon, H. S., Baek, S. H., Kim, S. M., et al., 2018 : Status of reserves and development technology of rare earth metals in Korea, Journal of the Korean Society of Mineral and Energy Resources Engineers, 55(1), pp.67-82.
  5. Zanin, M., Ametov, I., Grano, S., et al., 2009 : A study of mechanisms affecting molybdenite recovery in a bulk copper/molybdenum flotation circuit, International Journal of Mineral Processing, 93(3-4), pp.256-266. 
  6. Han, S., Jung, M., Lee, W., et al., 2021 : Diagnosis and optimization of gold ore flotation circuit via linear circuit analysis and mass balance simulation, Minerals, 11(10), 1065. 
  7. Jeon, H.-S., Lee, E.-S., Baek, S.-H., et al., 2016 : Recovery of high-grade molybdenite concentrate for lubricant use by froth flotation, Journal of the Korean Society of Mineral and Energy Resources Engineers, 53, pp.219-230. 
  8. Lin, Q. Q., Gu, G. H., Wang, H., et al., 2018 : Flotation mechanisms of molybdenite fines by neutral oils, International Journal of Minerals, Metallurgy, and Materials, 25, pp.1-10. 
  9. Han, S., Jeong, M., Lee, W., et al., 2018 : Simulation of grinding/classification circuit in domestic gold ore processing plant using energy-based grinding model and mathematical classification model, Journal of the Korean Society of Mineral and Energy Resources Engineers, 55(1), pp.8-19. 
  10. Jankovic, A., Valery, W., 2013 : Closed circuit ball mill-Basics revisited, Minerals Engineering, 43, pp.148-153. 
  11. Rodriguez-Torres, I., Tuzcu, E. T., Andrade-Martinez, J., et al., 2023 : Estimation methodology for Bond ball mill work index experiment output via mathematical modeling, Minerals Engineering, 201, 108186. 
  12. Park, C.-H., 2021 : Estimation of rate constants and mixing characteristics in flotation columns, Applied Sciences, 11, 10084. 
  13. Han, S., You, K., Kim, K., et al., 2019 : Measurement of the attachment force between an air bubble and a mineral surface: relationship between the attachment force and flotation kinetics, Langmuir, 35(29), pp. 9364-9373. 
  14. Purev, O., Kim, H. S., Park, C.-H., 2023 : Mineralogical characteristics and fundamental study of flotation for molybdenum ore, Resources Recycling, 31(6), pp.34-44. 
  15. Kim, H. S., Purev, O., Park, C.-H., 2023 : Experimental design of column flotation for recovery of high grade molybdenite, Resources Recycling, 32(6), pp.34-44. 
  16. Park, C.-H., Jeon, H.-S., Kim, B.-G., et al., 2009 : Froth Flotation of Molybdenite Ore from Dong-won NMC Mine, Journal of the Korean Society of Mineral and Energy Resources Engineers, 46, pp.754-760. 
  17. Wills, B. A., Finch, J., 2016 : Wills' mineral processing technology: an introduction to the practical aspects of ore treatment and mineral recovery, pp.265-380, Elsevier, Amsterdam. 
  18. Magdalinovic, N., 1989 : A procedure for rapid determination of the Bond work index, International Journal of Mineral Processing, 27(1-2), pp.125-132. 
  19. Vincent, A. Y., Blessing, O., Oyelola, A. O., et al., 2019 : Determination of work index for iperindo lode gold deposit at Ilesha Goldfield Osun State, Nigeria using modified bond index, American Journal of Materials Synthesis and Processing, 4(1), pp.37-42.