농업과 환경분야에서 토양 상태를 신속하고 주기적으로 모니터링하는 것에 대한 관심이 높아지고 있다. 토양의 특성을 측정하는 기존의 화학분석 방식은 분석의 정밀도, 시료의 수, 분석항목 등에 따라 시간, 인력, 비용적 소모가 커진다. 최근에는 식품, 농업, 환경 분야에서 신속하고 비파괴적 분석 방법으로 가시 근적외선 분광학을 도입하고 있다. 가시 근적외선 영역(VNIR, 400-2400 nm)에는 다양한 물질의 고유한 흡수분광형태가 존재한다는 이론적 토대로부터 물질의 정성 정량적 분석이 가능하다고 알려져 있다. 본 연구에서는 VNIR 분광 스펙트럼으로부터 Al, organic carbon (OC), clay, silt, sand, CEC (Cation exchange capacity), CEC/clay 등의 토양 특성을 정량하고자 하였다. 농경지에서 채취한 94개 토양시료를 기존의 화학분석 방법으로 분석하고 실내에서 VNIR 스펙트럼을 측정하였다. 스펙트럼은 원시형태와, 1차, 2차 도함수로 변환된 형태 모두 partial least square regression (PLSR) 모델에 적용하였다. PLSR에 의한 토양특성 추정식은 RMSE, $R^2$, SDE, RPD 값을 이용하여 검증하였다. Al, OC, silt, sand 함량에 대해서는 통계적으로 유의한 수준의 추정값을 산출하였고, clay와 CEC/clay에 대해 추정한 값은 실측값과 약한 상관성을 나타내었다. 이러한 분광학적인 추정 기법은 영상을 이용한 정성 정량분석에 활용될 수 있을 것으로 사료된다.
Using visible-near infrared(Vis-NIR) spectra combined with machine learning methods, the feasibility of quick and non-destructive classification of Convolvulaceae species was studied. The main aim of this study is to classify six Convolvulaceae species in the field in different geographical regions of South Korea using a handheld spectrometer. Spectra were taken at 1.5 nm intervals from the adaxial side of the leaves in the Vis-NIR spectral region between 400 and 1,075 nm. The obtained spectra were preprocessed with three different preprocessing methods to find the best preprocessing approach with the highest classification accuracy. Preprocessed spectra of the six Convolvulaceae sp. were provided as input for the machine learning analysis. After cross-validation, the classification accuracy of various combinations of preprocessing and modeling ranged between 43.4% and 98.6%. The combination of Savitzky-Golay and Support vector machine methods showed the highest classification accuracy of 98.6% for the discrimination of Convolvulaceae sp. The growth stage of the plants, different measuring locations, and the scanning position of leaves on the plant were some of the crucial factors that affected the outcomes in this investigation. We conclude that Vis-NIR spectroscopy, coupled with suitable preprocessing and machine learning approaches, can be used in the field to effectively discriminate Convolvulaceae sp. for effective weed monitoring and management.
For efficient use of wood, it is important to control moisture of wood in processing wood. Near-infrared (NIR) spectroscopy can be used to estimate the physical and chemical properties of materials quickly and nondestructively. In this study, it was intended to measure the moisture contents on the surface of wood using NIR spectroscopy coupled with multivariate analytic statistical techniques. Because NIR spectroscopy is affected by the chemical components of the specimens and contains signal noise, a regression model for detecting moisture content of wood was established after carrying out several numerical pretreatments such as Smoothing, Derivative and Normalization in this study. It shows that the regression model using NIR absorbance in the range of 750~2,500 nm predicts the actual surface moisture content very well. Near-infrared spectroscopy technique developed in this study is expected to improve a technology to control moisture content of wood in using and drying process.
Absorption spectra of blood components have been measured for the purpose of predicting the total hemoglobin concentration. We obtained absorption spectra of major blood components from the visible to near-infrared of $400{\sim}2500nm$ region. In the near-infrared, water is the main absorbing constituent. The amount of water in the sample cell varies depending on the volume of solute concentration(water displacement). We acquired water-compensated spectra by considering the variation of water volume depending on the variation of analyze concentration. Those spectra show inherent absorption peaks of analyzes and linearity with respect to concentration. We selected wavelengths for non-invasive measurement of hemoglobin concentration considering the scattering effect of tissue and the interference of other blood components.
SPHEREx의 중요 임무 중 하나는 $0.75{\mu}m$와 $5{\mu}m$ 사이에서 $H_2O$, CO, $CO_2$, XCN, OCS, 그리고 $CH_3OH$와 같은 얼음 분자의 전천 탐사 스펙트럼을 제공하는 것이다. 이러한 얼음 분자는 성간분자운의 먼지 티끌 표면에서 생성되어 별 탄생의 필연적 산물이며, 행성이 형성되는 원시행성계원반에서 다양한 변화를 겪게 되고, 복잡한 유기분자를 합성하게 된다. 하지만 충분하지 않은 관측 자료로 인해, 얼음 분자의 진화에 대한 이해가 미약한 상태이다. 현재까지는 근적외선에서 충분히 밝은 100 여개의 배경별이나 원시성에 대해서만 얼음 스펙트럼을 관측할 수 있었다. SPHEREx를 이용한 고감도 전천 탐사 미션은 약 20,000 여개의 배경별과 원시성에 대해 얼음 분자 스펙트럼을 제공할 것이다. 이렇게 100 배 이상 늘어난 샘플 스펙트럼 수로 인해, 얼음 분자의 진화에 대해서 통계적으로 의미있는 연구가 가능해 질 것이다. 본 발표에서는 SPHEREx의 Ice Program을 소개하고, 기대되어지는 결과에 대해서 논의하고자 한다.
Kim, Tae-Dong;Lee, Seung-hyun;Baik, Kyung-Jin;Jang, Byung-Jun;Jung, Kyeong-Hoon
The Journal of Korean Institute of Electromagnetic Engineering and Science
/
v.28
no.8
/
pp.628-635
/
2017
It is important to prescribe and take medicines that are appropriate for symptoms, since medicines are closely related to human health and life. Moreover, it becomes more important to accurately classify genuine medicines with counterfeit, since the number of counterfeit increases worldwide. However, the number of high-quality experts who have enough experience to properly classify them is limited and there exists a need for the automatic technique to classify medicine tablets. In this paper, we propose a method to classify the tablets by using a handheld spectrometer which provides both Near Infra-Red (NIR) and visible light spectrums. We adopted Support Vector Machine(SVM) as a machine learning algorithm for tablet classification. As a result of the simulation, we could obtain the classification accuracy of 99.9 % on average by using both NIR and visible light spectrums. Also, we proposed a two-step SVM approach to discriminate the counterfeit tablets from the genuine ones. This method could improve both the accuracy and the processing time.
The honey samples harvested in 1996, 1997, and 1998 were used for calibration and validation. NIR spectra were obtained using NIR spectrometer and quartz glass device with gold coating diffuser. Multiple linear regression and partial least square were used for calibrations. The correlation coefficient (RSQ) and standard error of prediction (SEP) obtained for moisture were 0.997 and 0.1%, respectively. The RSQ and SEP for fructose and glucose were 0.926 and 0.951%, and the SEP were 0.54% and 0.52% respectively. The validation results for sucrose, maltose, HMF definition, and acidity of honey were considered to be sufficient for practical use RSQ and SEP for SCIR were 0.950 and $1.08%_{\circ}$, respectively. These results are indications of the rapid determination of purity of the honey through NIR analysis.
This study was conducted to measure Nitrogen(N), Phosphate($P_2O_5$), Potassium ($K_2O$), Organic matter(OM) and Moisture content of liquid pig manure by Near Infrared Spectroscopy(NIRS) and to develop an alternative and analytical instrument which are used for measurement of N, $P_2O_5$, $K_2O$, OM, and Moisture contents for liquid pig manure. The liquid pig manure sample's transmittance spectra were measured with a NIRS in the wavelength range of 400 to 2,500 nm. Multiple linear regression and partial least square regression were used for calibrations. The correlation coefficient(RSQ) and standard error of calibration(SEC) obtained for nitrogen were 0.9190 and 2.1649, respectively. The RSQ for phosphate, potassium, organic matter and moisture contents were 0.9749, 0.5046, 0.9883 and 0.9777, and the SEC were 0.5019, 1.9252, 0.1180 and 0.0789, respectively. These results are indications of the rapid determination of components of liquid pig manure through the NIR analysis. The simple analytical instrument for liquid pig manure consisted of a tungsten halogen lamp for light source, a sample holder, a quartz cell, a SM 301 spectrometer for spectrum analyzer, a power supply, an electronics, a computer and a software. Results showed that the simple analytical instrument that was developed can approximately predict the phosphate, organic matter and moisture content of the liquid pig manure when compared to the analysis taken by NIRS. The low predictability value of potassium however, needs further investigation. Generally, the experiment proved that the simple analytical instrument was reliable, feasible and practical for analyzing liquid pig manure.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.