• Title/Summary/Keyword: 근권분포

Search Result 53, Processing Time 0.036 seconds

Bacterial core community in soybean rhizosphere (콩 근권의 핵심 세균 군집)

  • Lee, Youngmi;Ahn, Jae-Hyung;Choi, Yu-Mi;Weon, Hang-Yeon;Yoon, Jung-Hoon;Song, Jaekyeong
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.347-354
    • /
    • 2015
  • Soybean is well known to be originated from Korea and far-east Asian countries, and studies of many root nodule bacteria associated with soybean have mainly-focused on nitrogen fixation, but much less study was carried out on bacterial community in the rhizosphere of soybean. In this study, we analyzed the bacterial community in rhizosphere of Korean soybean, Daepungkong using the pyrosequencing method based on the 16S rRNA gene to characterize the change of the rhizosphere community structure according to the growth stages of soybeans and to elucidate bacterial core community in rhizosphere of soybean. Our results revealed that bacterial community of rhizosphere soil differed from that of bulk soil and was composed of a total of 21 bacterial phyla. The predominant phylum in the rhizosphere of soybean was Proteobacteria (36.6-42.5%) and followed by Acidobacteria (8.6-9.4%), Bacteroidetes (6.1-10.9%), Actinobacteria (6.4-9.8%), and Firmicutes (5.7-6.3%). The bacterial core community in soybean rhizosphere was mainly composed of the operational taxonomic units (OTUs) belonging to the phylum Proteobacteria throughout all growth stages. The OTU00006 belonged to the genus Bradyrhizobium had the highest abundance and Steroidobacter, Streptomyces, Devosia were followed. These results show that bacterial core community in soybean rhizosphere was mainly composed of OTUs associated with plant growth promotion and nutrient cycles.

The Detection and a Quantitative Evaluation of Entomopathogenic Nematodes in Cultivated Rhizosphere Soil (경작지 근권 토양내 곤충병원성 선충의 검출 및 정량적 평가)

  • 황경숙;한상미;김윤지;남필원;한송이
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.3
    • /
    • pp.271-275
    • /
    • 2003
  • The direct count and MPN (Most Probable Number) methods were used to measure the number of nematodes in soils collected from cultivated and non-cultivated fields. As a result, the number of nematodes from cultivated soils was higher than the non-cultivated soils (NC -1, NC -2). On the other hand, upon measuring the value from the organo farming cultivated soils (OC, OR) and conventional cultivated soils (CC, CR), the former showed 16 times higher than the latter. These results indicate that nematode population which can multiply in the organic compounds abundantly exist in the organo farming cultivated soil. Isolated entomopathogenie nematodes are composed of two orders, which were Rhabditida and Diplogasterida. To determine the pathogene-city of them using the 5th larvae and pupae silkworm, and the following mean $LD_{90}$ values were found: 24 to 30 hours in Rhabditida and 36 to 48 hours in Diplogasterida nematode, respectively. This study indicates that nematodes are sensitive to this kind of environmental disturbance. Isolated entomopathogenic nematodes were suggested that aye quite within the realms of possibility for biological control agents.

Phylogenetic characteristics of actinobacterial population in bamboo (Sasa borealis) soil (조릿대 대나무림 토양 내 방선균군집의 계통학적 특성)

  • Lee, Hyo-Jin;Han, Song-Ih;Whang, Kyung-Sook
    • Korean Journal of Microbiology
    • /
    • v.52 no.1
    • /
    • pp.59-64
    • /
    • 2016
  • In this study, a pyrosequencing was performed and analyzed to verify the phylogenetic diversity of actinomycetes in the bamboo (Sasa borealis) soil as a base study to obtain the genetic resources of actinomycetes. It was found that the rhizosphere soil had much various distribution in bacterial communities showing a diversity of 8.15 with 2,868 OTUs, while the litter layer showed a diversity of 7.55 with 2,588 OTUs. The bacterial community in the bamboo soil was composed of 35 phyla and the predominant phyla were Proteobacteria (51-60%), Bacteroidetes (16-20%), Acidobacteria (4-16%) and Actinobacteria (4-14%). In particular, Actinobacteria including Micromonosporaceae and Streptomycetaceae had a diverse distribution of actinomycetes within the six orders, 35 families and 121 genera, and it was characterized that about 83% of actinomycetes within Actinomycetales belonged to the 28 families. Among the dominant actinobacterial populations, Micromonosporaceae, Pseudonocardiaceae and Streptomycetaceae were representative family groups in the bamboo soils.

Temperature Distribution of Nutrient Solution and Root Media in Recycled Soilless Culture Systems (순환형 무토양재배시스템의 양액 및 배지내 온도분포)

  • 손정익;박종석
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1997.05a
    • /
    • pp.62-64
    • /
    • 1997
  • 작물생육은 근권 부근의 온도와 밀접한 관계가 있다. 따라서 외부환경의 영향을 받기 쉬운 단순 경량화된 순환형 무토양재배시스템내의 양액 또는 배지의 온도 변화를 파악하여 환경조절을 통한 적정 생육환경을 조성할 수 있다면, 작물의 생산성에 기여할 수 있다. 본 연구는 순환식 무토양재배시스템의 위치별 온도 분포 및 배양액의 공급 과 온도변화와의 관계를 분석하였다.

  • PDF

Characterization of PAH-Degrading Bacteria from Soils of Reed Rhizosphere in Sunchon Bay Using PAH Consortia (순천만 갈대근권 토양으로부터 얻은 PAH 분해세균의 특성 분석)

  • Kim Sung-Hyun;Kang Sung-Mi;Oh Kye-Heon;Kim Seung-Il;Yoon Byoung-Jun;Kahng Hyung-Yeel
    • Korean Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.208-215
    • /
    • 2005
  • This study was accomplished in order to collect fundamental data on microbial roles in recycling process of reed rhizosphere. Sunchon bay, which is considered as one of the marsh and mud environments severely affected by human activities such agriculture and fisheries, was selected as a model place. In our initial efforts, two bacterial consortia were obtained by enrichment culture using PAH mixtures containing anthracene, naphthalene, phenanthrene and pyrene as the sources of carbon and energy, and four pure bacteria capable of rapid degradation of PAH were isolated from them. Four strains designated as SCB1, SCB2, SCB6, and SCB7 revealed by morphological, physiological and molecular analyses were identified as Burkholderia anthina, Alcaligenes sp., Achromobacter xylosoxidans., and Pseudomonas putida, respectively with over $99{\%}$ confidence. Notably, Burkholderia anthina SCB1 and Alcaligenes sp. SCB2 were found to utilize anthracene and pyrene more quickly than naphthalene and phenanthrene, whereas Achromobacter xylosoxidans SCB6 and Pseudomonas putida SCB7 exhibited similar growth and degradation patterns except for pyrene. These facts suggest that the rhizosphere microorganisms capable of PAH degradation might be used to clean up the contamination sites with polycyclic aromatic hydrocarbons.

Community Structure of Arbuscular Mycorrhizal Fungi in the Islands of Chungnam, Korea (충남 섬 지역 근권 토양의 수지상균근균 군집 구조)

  • Lee, Jeong-Youn;Lee, Eun-Hwa;Ka, Kang-Hyeon;Eom, Ahn-Heum
    • The Korean Journal of Mycology
    • /
    • v.44 no.1
    • /
    • pp.16-22
    • /
    • 2016
  • Five islands (Sinjindo, Mado, Daenanjido, Wonsando, and Sapsido) and the coastal area (Muchangpo) in Chungnam, Korea, were selected to determine the diversity of arbuscular mycorrhizal (AM) fungi. Soil-inhabiting AM fungi were isolated and identified on the basis of morphological characteristics and sequence analyses of 18s rDNA. The differences in the fungal community structures were compared among sites. As a result, 24 species of AM fungi were identified, of which two species of AM fungi, Acaulospora brasiliensis and Redeckera fulvum, were isolated for the first time in Korea. This study revealed that AM fungal spore abundance was low and the genus Acaulospora was dominant in most of the islands. AM fungal community structures in five Islands were highly similar. However, the coastal area, Muchangpo, had different AM fungal community structure from the islands.

Analysis of Soil mycoflora in Phytophthora Infested and Non-Infested Fields (역병의 감염 여부에 따른 토양 내 진균 분포)

  • Lee, Seon-Ju;Kim, Jong-Shik;Hong, Seung-Berm
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.2
    • /
    • pp.121-126
    • /
    • 2000
  • Composition of fungal communities in three microhabitats such as soil, rhizosphere and rhizoplane were studied to understand the root environment of healthy and diseased plants in Phytophthora non-infested and infested fields, respectively. Samples were collected from the tomato- and red pepper-growing greenhouses in Kyungsang-Nam Province on April, 1999. Twenty-five species were isolated from each vegetation field using the dilution plate technique. There were a greater variety of species in infested fields than non-infested and in soils than in both rhizospheres and rhizoplanes. The number of species isolated were varied amongst the different microhabitats. A Trichoderma species was isolated only from non-infested fields.

  • PDF

Diversity of Arbuscular Mycorrhizal Fungi Isolated from Dokdo Island (독도의 식물 근권에 분포하는 수지상균근균의 다양성)

  • Eo, Ju-Kyeong;Park, Hyeok;Choi, Seung-Se;Shin, Hyun-Chul;Song, Se-Kyu;Eom, Ahn-Heum
    • The Korean Journal of Mycology
    • /
    • v.45 no.4
    • /
    • pp.284-291
    • /
    • 2017
  • In this study, arbuscular mycorrhizal fungi (AMF) were isolated from rhizosphere soils of Dokdo Island. Based on their morphological characteristics and 18S rDNA sequence analysis, eight species belonging to seven genera were identified: Acaulospora longula, A. mellea, Claroideoglomus claroideum, Diversispora aurantia, Funneliformis mosseae, Gigaspora margarita, Paraglomus occultum, and Septoglomus constrictum. No differences were noted between the AMF isolated from Dongdo and Seodo in Dokdo Island, and all of these AMF have been reported previously in Korea. These results could be useful for diversity and functional analyses of AMF in Korea.

Isolation and Characteristics of Exopolysaccharide Producing Bacteria in a Ginseng Root System (인삼 근계로부터 다당 생성세균의 분리 및 특성)

  • Cho, Geon-Yeong;Jeon, In-Hwa;Han, Song-Ih;Whang, Kyung-Sook
    • Korean Journal of Microbiology
    • /
    • v.49 no.3
    • /
    • pp.297-300
    • /
    • 2013
  • EPS producing bacteria were enumerated in ginseng root system (rhizosphere soil, rhizoplane, inside of root). EPS producing bacterial density of rhizosphere soil, rhizoplane and inside of root were distributed $9.0{\times}10^6$ CFU/g, $7.0{\times}10^6$ CFU/g, and $1.4{\times}10^3$ CFU/g, respectively. Phylogenetic analysis of the 24 EPS producing isolates based on the 16S rRNA gene sequences, EPS producing isolates from rhizosphere soil (RS) belong to genus Arthrobacter (6 strains) and Rhizobium (1 strain). EPS producing bacteria from rhizoplane (RP) were Arthrobacter (6 strains), Rhodococcus (1 strain) and Pseudomonas (1 strain). EPS producing bacteria from inside of root (IR) were categorized into Rhzobium (6 strains), Bacillus (1 strain), Rhodococcus (1 strain), and Pseudomonas (1 strain). Phylogenetic analysis indicated that Arthrobacter may be a member of representative EPS producing bacteria from ginseng rhizosphere soil and rhizoplane, and Rhizobium is typical EPS producing isolates from inside of ginseng root. The yield of EPS was 10.0 and 4.9 g/L by Rhizobium sp. 1NP2 (KACC 17637) and Arthrobacter sp. 5MP1 (KACC 17636). The purified EPS were analyzed by Bio-LC and glucose, galactose, mannose and glucosamine were detected. The major EPS sugar of these strains was glucose (72.7-84.9%).

Diversity and Phylogenetic Analysis of Culturable Marine Bacteria Isolated from Rhizosphere Soils of Suaeda japonica Makino in Suncheon Bay (순천만 칠면초의 근권으로부터 분리된 해양세균의 다양성 및 계통학적 분석)

  • You, Young-Hyun;Park, Jong Myong;Nam, Yoon-Jong;Kim, Hyun;Lee, Myung-Chul;Kim, Jong-Guk
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.189-196
    • /
    • 2015
  • Bacterial diversity was studied in the rhizosphere of Suaeda japonica Makino, which is native to Suncheon Bay in South Korea. Soil samples from several sites were diluted serially, and pure isolation was performed by subculture using marine agar and tryptic soy agar media. Genomic DNA was extracted from 29 pure, isolated bacterial strains, after which their 16S rDNA sequences were amplified and analyzed. Phylogenetic analysis was performed to confirm their genetic relationship. The 29 bacterial strains were classified into five groups: phylum Firmicutes (44.8%), Gamma proteobacteria group (27.6%), Alpha proteobacteria group (10.3%), phylum Bacteriodetes (10.3%), and phylum Actinobacteria (6.8%). The most widely distributed genera were Bacillus (phylum Firmicutes), and Marinobacterium, Halomonas, and Vibrio (Gamma proteobacteria group). To confirm the bacterial diversity in rhizospheres of S. japonica, the diversity index was used at the genus level. The results show that bacterial diversity differed at each of the sampling sites. These 29 bacterial strains are thought to play a major role in material cycling at Suncheon Bay, in overcoming the sea/mud flat-specific environmental stress. Furthermore, some strains are assumed to be involved in a positive interaction with the halophyte S. japonica, as rhizospheric flora, with induction of growth promotion and plant defense mechanism.