Characterization of PAH-Degrading Bacteria from Soils of Reed Rhizosphere in Sunchon Bay Using PAH Consortia

순천만 갈대근권 토양으로부터 얻은 PAH 분해세균의 특성 분석

  • Kim Sung-Hyun (Department of Environmental Education, Sunchon National University) ;
  • Kang Sung-Mi (Department of Environmental Education, Sunchon National University) ;
  • Oh Kye-Heon (Department of Life Science, Sonnchunhyang University) ;
  • Kim Seung-Il (Proteom Analysis Team. Korea Basic Science Institute) ;
  • Yoon Byoung-Jun (Department of Life Science, Cheju National University) ;
  • Kahng Hyung-Yeel (Department of Environmental Education, Sunchon National University)
  • 김성현 (순천대학교 환경교육과) ;
  • 강성미 (순천대학교 환경교육과) ;
  • 오계현 (순천향대학교 생명과학과) ;
  • 김승일 (한국기초과학지원연구원 프로테옴팀) ;
  • 윤병준 (제주대학교 생명과학과) ;
  • 강형일 (순천대학교 환경교육과)
  • Published : 2005.09.01

Abstract

This study was accomplished in order to collect fundamental data on microbial roles in recycling process of reed rhizosphere. Sunchon bay, which is considered as one of the marsh and mud environments severely affected by human activities such agriculture and fisheries, was selected as a model place. In our initial efforts, two bacterial consortia were obtained by enrichment culture using PAH mixtures containing anthracene, naphthalene, phenanthrene and pyrene as the sources of carbon and energy, and four pure bacteria capable of rapid degradation of PAH were isolated from them. Four strains designated as SCB1, SCB2, SCB6, and SCB7 revealed by morphological, physiological and molecular analyses were identified as Burkholderia anthina, Alcaligenes sp., Achromobacter xylosoxidans., and Pseudomonas putida, respectively with over $99{\%}$ confidence. Notably, Burkholderia anthina SCB1 and Alcaligenes sp. SCB2 were found to utilize anthracene and pyrene more quickly than naphthalene and phenanthrene, whereas Achromobacter xylosoxidans SCB6 and Pseudomonas putida SCB7 exhibited similar growth and degradation patterns except for pyrene. These facts suggest that the rhizosphere microorganisms capable of PAH degradation might be used to clean up the contamination sites with polycyclic aromatic hydrocarbons.

본 연구는 농업과 어업, 그리고 생태체험과 같은 인간들의 활동으로 인하여 상당히 영향을 받는 갯벌환경 중의 하나인 순천만을 모델장소로 갈대의 환경정화 기능에 있어 근권에 분포하는 미생물의 역할에 대한 기초 자료를 얻고자 수행하였다. 우선, 순천만의 갈대근권 토양을 시료로하고 anthracene, naphthalene, phenanthrene, pyrene 등이 첨가된 다환성 방향족 화합물(polycyclic aromatic hydrocarbons; PAH)을 탄소원 및 에너지원으로 하는 농화 배양을 통하여 두 개의 consortium을 획득하였다. 두 consortium으로부터 순수 분리된 우수한 PAH분해능을 갖는 4개의 균주(SCB1, SCB2, SCB6,그리고 SCB7)를 형태 및 생리학적 특성과 16S rRNA유전자서열을 기초로 분석한 결과 각 균주는 $99{\%}$ 이상의 신뢰도로 Burkholderia sp., Aicaligenes sp., Achromobacter sp., and Pseudomonas sp.로 동정되었다. 주목할 만한 점은 Burkholderia sp. SCB1과 Alcaligenes sp. SCB2는 naphthalene이나 phenanthrene보다 훨씬 안정되어 있는 구조의 anthracene이나 pyrene에서 더 빠른 성장률과 기질 분해율을 나타내는 것으로 밝혀졌다. 반면,Achromobacter sp. SCB6와 Pseudomonas sp. SCB7은 pyrene을 제외한 다른 시험기질에 대하여 유사한 성장 및 분해패턴을 나타내었다. 이러한 결과는 주요한 염습지 식물중의 하나인 갈대의 근권에서 살아가는 이들 PAH 분해 균주들이 PAH와 같은 물질로 오염된 근권 환경의 정화작용에 중요한 역할을 할 수 있음을 제시해 주었다.

Keywords

References

  1. 강봉조, 김미란, 윤병준, 이동헌, 오덕철, 강형일. 2002. 제주연안 갯녹은(백화) 지역의 해수에 분포하는 세균군 의 분자생물학적 분석. 미생물학회지 38, 127-132
  2. 농촌진흥청. 1988. 토양화학분석법
  3. 백근식, 최지혁, 성치남. 2000. 순천만 갯벌 토양의 섬유소 분해능 및 체외효소 활성. 미생물학회지 36, 130-135
  4. 심우섭, 한인섭. 1998. 울산지역에서 자생하는 갈대, 부들, 갈풀을 이용한 Reed-bed의 생활하수 정화능력 연구. 한국환경과학회지 7, 117-121
  5. 안홍규. 2000. 토양의 물리적 특성 및 수분조건에 따른 하반식물의 분포 -토양환경과 식생과의 관계를 중심으로-. 한국조경학회지 28, 39-47
  6. 이명숙, 홍순규, 이동훈, 김치경, 배경숙. 2001. 16S rRNA 유전자 분석에 의한 전남 순천만 갯벌의 세균 다 양성. 미생물학회지 37, 137-144
  7. 환경부. 1998. 서남해안 갯벌생태보고서. pp.108-124
  8. Begg, J.S., R.L. Lavigne, and P.L. Veneman. 2001. Reed beds: constructed wetlands for municipal wastewater treatment plant sludge dewatering. Water Sci. Technol. 44, 393-398
  9. Cerniglia, C.E. 1993. Biodegradation of polycyclic aromatic hydrocarbons. Biotechnol. 4, 331-338
  10. Cigolini, J.F. 2000. Molecular analysis of polycyclic aromatic hydrocarbon degradation by Mycobacterium sp. strain PYO1. Ph.D thesis, Rutgers, The State University of New Jersey
  11. Cooper, P.F., J.A. Hobson, and S. Jowes. 1989. Sewage treatment by reed bed systems. J. Ins. Wat. Environ. Man. 3, 60-74 https://doi.org/10.1111/j.1747-6593.1989.tb01367.x
  12. Daane, L.L., I. Harjono, G.J. Zylstra, and M.M. Haggblom. 2001. Isolation and characterization of polycyclic aromatic hydrocarbon-degrading bacteria associated with the rhizosphere of salt marsh plants. Appl. Environ. Microbiol. 67, 2683-2691 https://doi.org/10.1128/AEM.67.6.2683-2691.2001
  13. Farrell, R.E., C.M. Frick, and J.J. Germida. 2000. PhytoPet${\circledR}$oe: A database of plants that play a role in the phytoremediation of petroleum hydrocarbons. Proceedings of the Second Phytoremediation Technical Seminar, Environment, Canada, Ottawa, ON. pp. 29-40
  14. Gersberg, R.M., B.V. Elkins, S.R. Lyon, and C.R. Goldman. 1986. Role of aquatic plants in wastewater treatment by artificial wetlants. Water Res. 20, 363-368 https://doi.org/10.1016/0043-1354(86)90085-0
  15. Hobbie, J.E., R.J. Daley, and S. Jasper. 1997. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33, 1225-1228
  16. Kahng, H.-Y., J.C. Mainverni, M.M. Majko, and J.J. Kukor.2001. Genetic and functional analysis of the tbc operons for catabolism of alkyl- and chloroaromatic compounds in Burkholderia sp. JS150. Appl. Environ. Microbiol. 38, 127-132
  17. Kahng. H.-Y., K. Nam, J.J. Kukor, B.-J. Yoon, D.-H. Lee, D,-C. Oh, S.-K. Kam, and K.-H. Oh. 2002. PAH utilization by Pseudomonas rhodesiae KK1 isolated from a former manufactured-gas plant site. Appl. Microbiol. Biotechnol. 30, 475-480
  18. Kern, J. and C. Idler. 1999. Treatment of domestic and agricultural wastewater by reed bed systems. Ecol. Eng. 12, 13-25 https://doi.org/10.1016/S0925-8574(98)00051-2
  19. Maniatis, T., E.F. Fritsch, and J. Sambrook. 1991. Molecular cloning- A laboratory manual. Cold Spring Harbor Laborary. Cold Spring. N.Y
  20. McLean, E.O. 1982. Soil pH and lime requirement. in: methods of soil analysis, part 2: chemical and microbiological properties. 2nd edition. page, A.L., editor. American Society of Agronomy, Inc., Madison
  21. Obarska-Pempkowiak, H. and K. Klimkowska. 1999. Distribution of nutrients and heavy metals in a constructed wetland system. Chemosphere 39, 303-312 https://doi.org/10.1016/S0045-6535(99)00111-3
  22. Nam, K. and J.J. Kukor. 2000. Combined ozonation and biodegradation for remediation of mixtures of polycyclic aromatic hydrocarbons in soil. Biodegradation 11, 1-9 https://doi.org/10.1023/A:1026592324693
  23. van Agteren, M.H., S. Keuning, and D.B. Janssen. 1988. Handbook on Biodegradation and Biological Treatment of Harzardous Organic Compounds. Kluwer Academic Publishers