Browse > Article
http://dx.doi.org/10.7845/kjm.2015.5052

Bacterial core community in soybean rhizosphere  

Lee, Youngmi (Agricultural Microbiology Division, National Academy of Agricultural Science, RDA)
Ahn, Jae-Hyung (Agricultural Microbiology Division, National Academy of Agricultural Science, RDA)
Choi, Yu-Mi (RDA-Genebank, National Academy of Agricultural Science, RDA)
Weon, Hang-Yeon (Agricultural Microbiology Division, National Academy of Agricultural Science, RDA)
Yoon, Jung-Hoon (Department of Food Science and Biotechnology, Sungkyunkwan University)
Song, Jaekyeong (Agricultural Microbiology Division, National Academy of Agricultural Science, RDA)
Publication Information
Korean Journal of Microbiology / v.51, no.4, 2015 , pp. 347-354 More about this Journal
Abstract
Soybean is well known to be originated from Korea and far-east Asian countries, and studies of many root nodule bacteria associated with soybean have mainly-focused on nitrogen fixation, but much less study was carried out on bacterial community in the rhizosphere of soybean. In this study, we analyzed the bacterial community in rhizosphere of Korean soybean, Daepungkong using the pyrosequencing method based on the 16S rRNA gene to characterize the change of the rhizosphere community structure according to the growth stages of soybeans and to elucidate bacterial core community in rhizosphere of soybean. Our results revealed that bacterial community of rhizosphere soil differed from that of bulk soil and was composed of a total of 21 bacterial phyla. The predominant phylum in the rhizosphere of soybean was Proteobacteria (36.6-42.5%) and followed by Acidobacteria (8.6-9.4%), Bacteroidetes (6.1-10.9%), Actinobacteria (6.4-9.8%), and Firmicutes (5.7-6.3%). The bacterial core community in soybean rhizosphere was mainly composed of the operational taxonomic units (OTUs) belonging to the phylum Proteobacteria throughout all growth stages. The OTU00006 belonged to the genus Bradyrhizobium had the highest abundance and Steroidobacter, Streptomyces, Devosia were followed. These results show that bacterial core community in soybean rhizosphere was mainly composed of OTUs associated with plant growth promotion and nutrient cycles.
Keywords
bacteria; community; core; pyrosequencing; rhizosphere; soybean;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Barns, S.M., Takala, S.L., and Kuske, C.R. 1999. Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Appl. Environ. Microbiol. 65, 1731-1737.
2 Baudoin, E., Benizri, E., and Guckert, A. 2002. Impact of growth stage on the bacterial community structure along maize roots, as determined by metabolic and genetic fingerprinting. Appl. Soil Ecol. 19, 135-145.   DOI
3 Berendsen, R.L., Pieterse, C.M.J., and Bakker, P.A.H.M. 2012. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478-486.   DOI
4 Chaparro, J.M., Badri, D.V., Bakker, M.G., Sugiyama, A., Manter, D.K., and Vivanco, J.M. 2013. Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS One 8, e55731.   DOI
5 Chaparro, J.M., Badri, D.V., and Vivanco, J.M. 2014. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 8, 790-803.   DOI
6 Clough, S.J. and Bent, A.F. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743.   DOI
7 Cole, J.R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R.J., Kulam-Syed-Mohideen, A., McGarrell, D., Marsh, T., and Garrity, G.M. 2009. The ribosomal database project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37, D141-D145.   DOI
8 Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., and Knight, R. 2011. Uchime improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194-2200.   DOI
9 Schloss, P.D. and Handelsman, J. 2006. Toward a census of bacteria in soil. PLoS Comput Biol. 2, e92.   DOI
10 Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., and Robinson, C.J. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537-7541.   DOI
11 Schmutz, J., Cannon, S.B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., Hyten, D.L., Song, Q., Thelen, J.J., Cheng, J., et al. 2010. Genome sequence of the palaeopolyploid soybean. Nature 463, 178-183.   DOI
12 Shade, A. and Handelsman, J. 2012. Beyond the venn diagram: The hunt for a core microbiome. Environ. Microbiol. 14, 4-12.   DOI
13 Sohn, J.H., Kwon, K.K., Kang, J.H., Jung, H.B., and Kim, S.J. 2004. Novosphingobium pentaromativorans sp. nov., a high-molecularmass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. Int. J. Syst. Evol. Microbiol. 54, 1483-1487.   DOI
14 Su, C., Lei, L., Duan, Y., Zhang, K.Q., and Yang, J. 2012. Culture-independent methods for studying environmental microorganisms: methods, application, and perspective. Appl. Microbiol. Biotechnol. 93, 993-1003.   DOI
15 Sugiyama, A., Ueda, Y., Zushi, T., Takase, H., and Yazaki, K. 2014. Changes in the bacterial community of soybean rhizospheres during growth in the field. PLoS One 9, e100709.   DOI
16 Van Spanning, R., Delgado, M., and Richardson, D. 2005. The nitrogen cycle: Denitrification and its relationship to $N_2$ fixation, pp. 277-342. Nitrogen fixation in agriculture, forestry, ecology, and the environment, Springer.
17 Faoro, H., Alves, A., Souza, E., Rigo, L., Cruz, L., Al-Janabi, S., Monteiro, R., Baura, V., and Pedrosa, F. 2010. Influence of soil characteristics on the diversity of bacteria in the southern brazilian atlantic forest. Appl. Environ. Microbiol. 76, 4744-4749.   DOI
18 Ward, N.L., Challacombe, J.F., Janssen, P.H., Henrissat, B., Coutinho, P.M., Wu, M., Xie, G., Haft, D.H., Sait, M., and Badger, J. 2009. Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl. Environ. Microbiol. 75, 2046-2056.   DOI
19 Xu, Y., Wang, G., Jin, J., Liu, J., Zhang, Q., and Liu, X. 2009. Bacterial communities in soybean rhizosphere in response to soil type, soybean genotype, and their growth stage. Soil Biol. Biochem. 41, 919-925.   DOI
20 Yousuf, B., Keshri, J., Mishra, A., and Jha, B. 2012. Application of targeted metagenomics to explore abundance and diversity of $CO_2$-fixing bacterial community using cbbL gene from the rhizosphere of Arachis hypogaea. Gene 506, 18-24.   DOI
21 Fehr, W.R. and Caviness, C.E. 1977. Stages of soybean development, Cooperative Extension Service; Agriculture and Home Economics Experiment Station, Iowa State University of Science and Technology.
22 Fierer, N. and Jackson, R.B. 2006. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 103, 626-631.   DOI
23 Foster, R. 1988. Microenvironments of soil microorganisms. Biol. Fert. Soils 6, 189-203.
24 Frey, S.D., Knorr, M., Parrent, J.L., and Simpson, R.T. 2004. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. Forest Ecol. Manag. 196, 159-171.   DOI
25 Girvan, M.S., Bullimore, J., Pretty, J.N., Osborn, A.M., and Ball, A.S. 2003. Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Appl. Environ. Microbiol. 69, 1800-1809.   DOI
26 Gomez-Pereira, P.R., Schuler, M., Fuchs, B.M., Bennke, C., Teeling, H., Waldmann, J., Richter, M., Barbe, V., Bataille, E., Glockner, F.O., et al. 2012. Genomic content of uncultured bacteroidetes from contrasting oceanic provinces in the north atlantic ocean. Environ. Microbiol. 14, 52-66.   DOI
27 Gottel, N.R., Castro, H.F., Kerley, M., Yang, Z., Pelletier, D.A., Podar, M., Karpinets, T., Uberbacher, E., Tuskan, G.A., Vilgalys, R., et al. 2011. Distinct microbial communities within the endosphere and rhizosphere of populus deltoides roots across contrasting soil types. Appl. Environ. Microbiol. 77, 5934-5944.   DOI
28 Isanga, J. and Zhang, G.N. 2008. Soybean bioactive components and their implications to health-a review. Food Rev. Int. 24, 252-276.   DOI
29 Graham, P.H. 2008. Ecology of the root-nodule bacteria of legumes, pp. 23-58. In Dilworth, M., James, E., Sprent, J., and Newton, W. (eds.), Nitrogen-fixing leguminous symbioses, Springer Netherlands.
30 Houlden, A., Timms-Wilson, T.M., Day, M.J., and Bailey, M.J. 2008. Influence of plant developmental stage on microbial community structure and activity in the rhizosphere of three field crops. FEMS Microbiol. Ecol. 65, 193-201.   DOI
31 Kirchman, D.L. 2002. The ecology of cytophaga-flavobacteria in aquatic environments. FEMS Microbiol. Ecol. 39, 91-100.
32 Lauber, C.L., Strickland, M.S., Bradford, M.A., and Fierer, N. 2008. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol. Biochem. 40, 2407-2415.   DOI
33 Lozupone, C. and Knight, R. 2005. Unifrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228-8235.   DOI
34 Mendes, L.W., Kuramae, E.E., Navarrete, A.A., van Veen, J.A., and Tsai, S.M. 2014. Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J. 8, 1577-1587.   DOI
35 Mougel, C., Offre, P., Ranjard, L., Corberand, T., Gamalero, E., Robin, C., and Lemanceau, P. 2006. Dynamic of the genetic structure of bacterial and fungal communities at different developmental stages of Medicago truncatula Gaertn. Cv. Jemalong line J5. New Phytol. 170, 165-175.   DOI
36 Ofek, M., Hadar, Y., and Minz, D. 2012. Ecology of root colonizing Massilia (Oxalobacteraceae). PLoS One 7, e40117.   DOI
37 Philippot, L., Raaijmakers, J.M., Lemanceau, P., and van der Putten, W.H. 2013. Going back to the roots: The microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11, 789-799.   DOI
38 Amann, R.I., Ludwig, W., and Schleifer, K.H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143-169.
39 Bakker, P.A.H.M., Berendsen, R.L., Doornbos, R.F., Wintermans, P.C.A., and Pieterse, C.M.J. 2013. The rhizosphere revisited: Root microbiomics. Front Plant Sci 4, 165.
40 Barbour, W., Hattermann, D., and Stacey, G. 1991. Chemotaxis of Bradyrhizobium japonicum to soybean exudates. Appl. Environ. Microbiol. 57, 2635-2639.
41 Prashar, P., Kapoor, N., and Sachdeva, S. 2014. Rhizosphere: its structure, bacterial diversity and significance. Rev. Environ. Sci. Biotechnol. 13, 63-77.   DOI
42 Pruesse, E., Peplies, J., and Glockner, F.O. 2012. Sina: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823-1829.   DOI
43 Quince, C., Lanzen, A., Davenport, R.J., and Turnbaugh, P.J. 2011. Removing noise from pyrosequenced amplicons. BMC Bioinformatics 12, 38.   DOI
44 Raaijmakers, J., Paulitz, T., Steinberg, C., Alabouvette, C., and Moenne-Loccoz, Y. 2009. The rhizosphere: A playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321, 341-361.   DOI
45 Rivas, R., Velazquez, E., Willems, A., Vizcaino, N., Subba-Rao, N.S., Mateos, P.F., Gillis, M., Dazzo, F.B., and Martinez-Molina, E. 2002. A new species of Devosia that forms a unique nitrogen-fixing root-nodule symbiosis with the aquatic legume Neptunia natans (L.f.) druce. Appl. Environ. Microbiol. 68, 5217-5222.   DOI
46 Rousk, J., Baath, E., Brookes, P.C., Lauber, C.L., Lozupone, C., Caporaso, J.G., Knight, R., and Fierer, N. 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4, 1340-1351.   DOI
47 Sakai, M., Hosoda, A., Ogura, K., and Ikenaga, M. 2014. The growth of Steroidobacter agariperforans sp. nov., a novel agardegrading bacterium isolated from soil, is enhanced by the diffusible metabolites produced by bacteria belonging to rhizobiales. Microb. Environ. 29, 89-95.   DOI