• Title/Summary/Keyword: 극한값

Search Result 336, Processing Time 0.027 seconds

A Study on the Lateral Flow in Polluted Soft Soils (오염된 연약지반의 측방유동에 관한 연구)

  • 안종필;박상범
    • The Journal of Engineering Geology
    • /
    • v.11 no.2
    • /
    • pp.175-190
    • /
    • 2001
  • This study investigates the existing theoretical backgrounds in order to examine the behavior of lateral flow according to the plasticity of soils when unsymmetrical surcharge is worked on polluted soft soils by comparing and analyzing the results measured through model tests. Model tests are canied out as follows soil tank, bearing frame and bearing plate are made. By increasing unsymmetrical surcharge to the ground soils with the consistent water content and with gradually increased polluted materials at intervals, the amounts of settlement, lateral displacement and upheaval were respectively observed. In conclusion, the value of critical surcharge was expressed as q$_{cr}$=2.78$_{cu}$ which was similar to those Tschebotarioff(q$_{cr}$=3.0$_{cu}$) and Meyerhof(q$_{cr}$=(B/2H+$\pi$/2)$_{cu}$) had been proposed. The value of ultimate capacity was expressed as q$_{ult}$=4.84$_{cu}$ which was similar to that of Prandtl. The lateral flow pressure is adeQuately calculated by the eQuation(P$_{max}$=K$_o$ r H) and the maximum value of lateral flow pressure is found near O.3H of layer thickness(H) and is higher to ground surface than the ones in composition pattern, Poulos distribution pattern and softclay soils (CL, CH) which is not polluted. The stability control method used in this research followed the management diagram of Tominaga.Hashimoto, Shibata.Sekiguchi, Matsuo.Kawamura who use the amounts of plasticity displacement by lateral flow. As a result, the ultimate capacity values in the diagram {S$_v$-(Y$_m$/S$_v$)} of Matsuo.Kawamura and in the diagram {(q/Y$_m$)-q} of Shibata. Sekiguchi were smaller than in the ones of load-settlement curve (q-S$_v$).

  • PDF

Numerical Analysis for the Pullout Behavior and Failure Mechanism of Ground Anchor (그라운드 앵커의 인발거동 및 파괴메카니즘에 대한 수치해석)

  • Park, Byung-Soo;Shim, Do-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.2
    • /
    • pp.69-76
    • /
    • 2010
  • This study is an numerical study of predicting the behavior of anchor embedded in weathered rocks, subjected to uplift loads, about ultimate pullout capacity and the failure mechanism. Factors influencing the behavior of anchors were investigated by reviewing the data about in-situ anchor tests performing numerical modelling with changing the bondage length of anchor, diameter of anchor body and diameter of tendon, and by correlations between those factors were evaluated to apply them to predict the behavior of anchors. As results of numerical analysis, a linear relationship between bondage length, diameter of anchor body and diameter of tendon with ultimate pullout capacity was obtained on the one hand, from the result of numerical analysis changing the Young's modulus of weathered rock, this parameter was found to influence to load-displacement and ultimate pullout capacity within the range of 10%, which was not so significant to affect.

Estimation of Ultimate Bearing Capacity of SCP and GCP Reinforced Clay for Laboratory Load Test Data (SCP 및 GCP 개량 점성토지반의 실내재하시험에 대한 극한지지력 산정 방법 개발)

  • Bong, Tae-Ho;Kim, Byoung-Il;Han, Jin-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.6
    • /
    • pp.37-47
    • /
    • 2018
  • In this study, 34 laboratory load test data were collected, and analyzed to propose the equations for predicting ultimate bearing capacity of sand compaction pile (SCP) and gravel compaction pile (GCP) reinforced clay. The collected data were compared with the ultimate bearing capacity estimated by existing theoretical equations, and the prediction accuracy of the existing theoretical equations was identified. Also, multiple regression analysis was performed to predict the ultimate bearing capacity, and the most efficient number and type of input variables were selected through error evaluation by leave-one-out cross validation. Finally, the multiple regression equations for estimating the ultimate bearing capacity of laboratory load test for SCP and GCP were proposed, and their performance was evaluated.

Comparison of Limit Strength of Steel Cable-Stayed Bridges using Nonlinear Inelastic Displacement and Buckling Analyses (비선헝 비탄성 유한변위 해석 및 좌굴해석에 의한 강사장교의 극한강도 비교)

  • Kim Sung-Eock;Choi Dong-Ho;Ma Sang-Soo;Song Weon-Keun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.3
    • /
    • pp.277-289
    • /
    • 2005
  • The study examines the limit strength for steel cable-stayed bridges. A case studies have been performed in order to evaluate the limit strength lot steel cable-stayed bridges using nonlinear inelastic analysis approach and bifurcation point instability analysis approach, effective tangent modulus $(E_f)$ method. To realize it, a practical nonlinear inelastic analysis condoling the initial shape is developed. In the initial shape analysis, updated structural configuration is introduced instead of initial member forces for beam-column members at every iterative step. Geometric and material nonlinearities of beam-column members are accounted by using stability function, and by using CRC tangent modulus and parabolic function, respectively Besides, geometric nonlinearity of cable members is accounted by using secant value of equivalent modulus of elasticity. The load-displacement relationships obtained by the proposed method are compared well with those given by other approaches. The limit strengths evaluated by the proposed nonlinear inelastic analysis for the proposed cable-stayed bridges with tee dimensional configuration compared with those by the inelastic bifurcation point instability analyses.

Effect of Bond Length and Web Anchorage on Flexural Strength in RC Beams Strengthened with CFRP Plate (부착길이와 복부정착이 CFRP판으로 보강된 RC 보의 휨 보강효과에 미치는 영향)

  • 박상렬
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.645-652
    • /
    • 2002
  • This paper presents the flexural behavior and strengthening effect of reinforced concrete beams bonded with carbon FRP plate. Parameters involved in this experimental study were plate bond length and sheet web anchorage length. Test beams were strengthened with FRP plate on the soffit and anchored with FRP sheet on the web. In general, strengthened beams with no web anchorage were failed by concrete cover failure along the longitudinal reinforcement. On the other hand, strengthened beams with web anchorage were finally failed by delamination shear failure within concrete after breaking of CFRP sheet wrapping around web. The ultimate load and deflection of strengthened beams increased with an increased bond length of FRP plate. Also, the ultimate load and deflection increased with an increased anchorage length of FRP sheet. Particularly, the strengthened beams with web anchorage maintained high ultimate load resisting capacity until very large deflection. The shape of strain distribution of CFRP plate along beam was very similar to that of bending moment diagram. Therefore, an assumption of constant shear stress in shear span could be possible in the analysis of delamination shear stress of concrete. In the case of full bond length, the ultimate resisting shear stress provided by concrete and FRP sheet Increased with an increase of web anchorage length. In the resisting shear force, a portion of the shear force was provided by FRP anchorage sheet.

A Study on the Prediction of Ultimate Stress of Tendon in Unbonded Prestressed Concrete Beams without Slip (비부착 PSC 보에서 슬립이 없는 강선의 극한 응력 예측에 관한 연구)

  • Hong, Sung-Su;Yoo, Sung-Won;Park, Seung-Bum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.537-548
    • /
    • 2008
  • Recently, the prestressed unbonded concrete structures are increasingly being built. The mechanical behavior of prestressed concrete beams with unbonded tendon is different from that of normal bonded PSC beams in that the increment of tendon stress was derived by whole member behavior. The purpose of the present paper is therefore to evaluate the flexural behavior and to propose the equation of ultimate tendon stress by performing static flexural test according to span/depth, concrete compression strength, reinforcement ratio and the effect of existing bonded tendon. From experimental results, for cracking, yielding and ultimate load, the effect of reinforcement ratio was more effective than concrete compression strength, and the beams having high strength concrete had a good performance than having low concrete, but there was no difference between high strength and low strength. And as L/dp was larger, test beams had a long region of ductility. This means that unbonded tendon has a large contribution after reinforcement yielding. Especially, the equation of ACI-318 was not match with test results and had no correlations. After analysis of test results, the equation of ultimate unbonded tendon stress without slip was proposed, and the proposed equation was well matched with test results. So the proposed equation in this paper will be a effective basis for the evaluation of unbonded tendons without slip, analysis and design.

유한요소의 형태 및 경계 조건이 Applied J 적분값에 미치는 영향

  • 라인식;조인득;지계광
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.123-130
    • /
    • 1996
  • 탄소성파괴역학의 발달과 함께 원자력 발전소의 설계시 고려해야 하는 고에너지 배관의 양단파단사고와 같은 극한 가정 대신 파단전누설(LBB : Leak Before Break)개념을 배관설계시 고려할 수 있도록 관련 규제 요건이 완화되어 원자력 발전소 고에너지 계통 설계에 새로운 설계 개념으로 적용할 수 있게 되었다. 파단전누설개념 적용시 균열 안정성 평가에 가장 널리 사용되는 방법은 J-T 방법이다. 본 연구에서는 유한요소법 사용시 균열 선단에서 요소의 크기 및 경계 조건 (Boundary Condition)이 변화할 때 Applied J 적분값에 미치는 영향을 ABAQUS 전산 프로그램을 이용하여 조사하였다.

  • PDF

Asymptotic Density of Quadratic Forms

  • 최기현
    • The Korean Journal of Applied Statistics
    • /
    • v.4 no.2
    • /
    • pp.149-156
    • /
    • 1991
  • The theory of the asymptotic behavior of Toeplitz forms is applicable to some problems concerning the local limit theorem.

  • PDF

Characteristics of Bearing Capacity under Square Footing on Two-layered Sand (2개층 사질토지반에서 정방형 기초의 지지력 특성)

  • 김병탁;김영수;이종현
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.289-299
    • /
    • 2001
  • 본 연구는 균질 및 2개층 비균질지반에서 사질토지반 상에 놓인 정방형 기초의 극한지지력과 침하에 대하여 고찰하였다. 본 연구는 얕은기초의 거동에 대한 정방형 기초의 크기, 지반 상대밀도, 기초 폭에 대한 상부층의 두께 비(H/B), 상부층 아래 경계면의 경사($\theta$) 그리고 지반강성비의 영향을 규명하기 위하여 모형실험을 수행하였다. 동일 상대밀도에서 지지력 계수($N_{{\gamma}}$)는 일정하지 않으며 기초 폭에 직접적으로 관련되며 지지력계수는 기초 폭이 증가함에 따라 감소하였다. 기초크기의 영향과 구속압력의 영향을 고려하는 Ueno 방법에 의한 극한지지력의 예측값은 고전적인 지지력 산정식보다 더 잘 일치하며 그 값은 실험값의 65% 이상으로 나타났다. $\theta$=$0^{\circ}$인 2개층 지반의 결과에 근거하여, 극한지지력에 대한 하부층 지반의 영향을 무시할 수 있는 한계 상부층 두께는 기초 폭의 2배로 결정되었다. 그러나, 73%의 상부층 상대밀도인 경우는 침하비($\delta$B) 0.05 이하에서만 이 결과가 유효하였다. 경계면이 경사진 2개층 지반의 결과에 근거하여, 상부층의 상대밀도가 느슨할수록 그리고 상부층의 두께가 클수록 극한지지력에 대한 경계면 경사의 영향은 크지 않는 것으로 나타났다. 경계면의 경사가 증가함에 따른 극한침하량의 변화는 경계면이 수평인 경우($\theta$=$0^{\circ}$)를 기준으로 0.82~1.2(상부층 $D_{r}$=73%인 경우) 그리고 0.9~1.07(상부층 $D_{r}$=50%인 경우) 정도로 나타났다.Markup Language 문서로부터 무선 마크업 언어 문서로 자동 변환된 텍스트를 인코딩하는 경우와 같이 특정한 응용 분야에서는 일반 문자열에 대한 확장 인코딩 기법을 적용할 필요가 있을 수 있다.mical etch-stop method for the etching of Si in TMAH:IPA;pyrazine solutions provides a powerful and versatile alternative process for fabricating high-yield Si micro-membranes. the RSC circle, but also to the logistics system in the SLC circle. Thus, the RSLC model can maximize combat synergy effects by integrating the RSC and the SLC. With a similar logic, this paper develops "A Revised System of Systems with Logistics (RSSL)" which combines "A New system of Systems" and logistics. These tow models proposed here help explain several issues such as logistics environment in future warfare, MOE(Measure of Effectiveness( on logistics performance, and COA(Course of Actions) for decreasing mass and increasing velocity. In particular, velocity in logistics is emphasized.

  • PDF

Assessment of the Internal Pressure Fragility of the PWR Containment Building Using a Nonlinear Finite Element Analysis (비선형 유한요소 해석을 이용한 PWR 격납건물의 내압 취약도 평가)

  • Hahm, Daegi;Park, Hyung-Kui;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.2
    • /
    • pp.103-111
    • /
    • 2014
  • In this study, the probabilistic internal pressure fragility analysis was performed by using the non-linear finite element analysis method. The target structure is one of the containment buildings of typical domestic pressurized water reactors(PWRs). The 3-dimensional finite element model of the containment building was developed with considering the large equipment hatches. To consider uncertainties in the material properties and structural capacities, we performed the sensitivity analysis of the ultimate pressure capacity with respect to the variation of four important uncertain parameters. The results of the sensitivity analysis were used to the selection of the probabilistic variables and the determination of their probabilistic parameters. To reflect the present condition of the tendon pre-stressing force, the data of the pre-stressing force acquired from the in-service inspections of tendon forces were used for the determination of the median value. Two failure modes(leak, rupture) were considered and their limit states were defined to assess the internal pressure fragility of target containment building. The internal pressure fragilities for each failure mode were evaluated in terms of median internal pressure capacity, high confidence low probability of failure(HCLPF) capacity, and fragility curves with respect to the confidence levels. The HCLPF capacity was 115.9 psig for leak failure mode, and 125.0 psig for rupture failure mode.