DOI QR코드

DOI QR Code

Assessment of the Internal Pressure Fragility of the PWR Containment Building Using a Nonlinear Finite Element Analysis

비선형 유한요소 해석을 이용한 PWR 격납건물의 내압 취약도 평가

  • Hahm, Daegi (Korea Atomic Energy Research Institute, Integrated Safety Assessment Division) ;
  • Park, Hyung-Kui (Korea Atomic Energy Research Institute, Integrated Safety Assessment Division) ;
  • Choi, In-Kil (Korea Atomic Energy Research Institute, Integrated Safety Assessment Division)
  • 함대기 (한국원자력연구원 종합안전평가부) ;
  • 박형규 (한국원자력연구원 종합안전평가부) ;
  • 최인길 (한국원자력연구원 종합안전평가부)
  • Received : 2014.03.12
  • Accepted : 2014.04.10
  • Published : 2014.04.30

Abstract

In this study, the probabilistic internal pressure fragility analysis was performed by using the non-linear finite element analysis method. The target structure is one of the containment buildings of typical domestic pressurized water reactors(PWRs). The 3-dimensional finite element model of the containment building was developed with considering the large equipment hatches. To consider uncertainties in the material properties and structural capacities, we performed the sensitivity analysis of the ultimate pressure capacity with respect to the variation of four important uncertain parameters. The results of the sensitivity analysis were used to the selection of the probabilistic variables and the determination of their probabilistic parameters. To reflect the present condition of the tendon pre-stressing force, the data of the pre-stressing force acquired from the in-service inspections of tendon forces were used for the determination of the median value. Two failure modes(leak, rupture) were considered and their limit states were defined to assess the internal pressure fragility of target containment building. The internal pressure fragilities for each failure mode were evaluated in terms of median internal pressure capacity, high confidence low probability of failure(HCLPF) capacity, and fragility curves with respect to the confidence levels. The HCLPF capacity was 115.9 psig for leak failure mode, and 125.0 psig for rupture failure mode.

본 연구에서는 비선형 유한요소 해석 기법을 적용한 격납건물의 내압취약도 평가를 수행하였다. 대상 구조물은 국내 대표적인 가압경수로형 원전 격납건물 중 하나로 하였다. 비선형 극한내압 해석을 위해 대규모 개구부를 고려한 격납건물의 3차원 유한요소 모델을 도출하였다. 재료 특성 및 구조적 성능에 내포된 불확실성을 고려하기 위하여 각 변수들의 변동성에 대한 극한내압 성능의 민감도 해석을 수행하였다. 민감도 해석 결과를 통해 확률론적 내압 취약도 평가를 위한 불확실성 변수 및 분포 특성을 도출하였다. 현재의 텐던 긴장력 상태를 고려하기 위하여 가동 중 검사 보고서에 기록된 텐던 긴장력 값을 중앙값으로 적용하였다. 누설(leak)과 파단(rupture)을 파괴모드로 정의하고, 각각에 대한 극한내압 취약도 평가를 위하여 한계상태를 정의하였다. 각 파괴모드에 대한 대상 격납건물의 내압취약도를 내압 성능 중앙값, 고신뢰도 저파괴확률 성능값, 신뢰도 수준에 따른 취약도 곡선을 통하여 제시하였다. 누설 및 파단 파괴모드에 대한 고신뢰도 저파괴확률값은 각각 0.7991 MPa, 0.8691 MPa로 평가되었다.

Keywords

References

  1. Kim, S.H. (2010) Three-Dimensional Structural Analysis System for Nuclear Containment Building, Journal of the Computational Structural Engineering Institute of Korea, 23(2), pp.235-243.
  2. Moon, I.H., Noh, S.H., Lee, S.Y., Kim, K.J. (2007) Structural Behavior of PSC Reactor Containment Structure under Temperature and Pressure Loading, Journal of the Korean Society of Civil Engineers, A27(6A), pp.847-858.
  3. Moon, I.H., Sim, J.S. (2004) An Ultimate Pressure Capacity Assessment of Prestressed Concrete Containment Vessel Considering Non-symmetric Factors, Journal of the Korean Society of Civil Engineers, A24(3A), pp.639-646.
  4. Moon, I.H., Ahn, S.M., Kim, T.Y. (2009) Probabilistic Ultimate Pressure Capacity Evalution of Reactor Containment Structure, Proceedings of the Meeting of the Korean Society of Civil Engineers, Korean Society of Civil Engineers, pp.3511-3514.
  5. Lee, H.-P., Choun, Y.-S. (2009) Shell Finite Element of Reinforced Concrete for Internal Pressure Analysis of Nuclear Containment Building, Journal of the Korean Society of Civil Engineers, A29(6A), pp.577-585.
  6. Choi, K.-R., Song, H.-W., Byun, K.-J. (2002) Evaluation of Ultimate Internal Pressure Capacity of Prestressed Concrete Reactor Containment Structure, Journal of the Korean Society of Civil Engineers, A22(4A), pp.859-870.
  7. Hahm, D., Choi, I.-K., Lee, H.-P. (2010) Assessment of the Internal Pressure Fragility of the CANDU Type Containment Buildings using Nonlinear Finite Element Analysis, Journal of the Computational Structural Engineering Institute of Korea, 23(4), pp.445-452.
  8. Han, S.H., Lim, H.G., Cho, Y.J. (2010) MOSAIQUEA Sofware for Estimating Probabilistic Uncertainty of Safety Analysis using Computerized Simulation Models, ESREL 2010 Annual Conference, European Safety and Reliability Association, Sep. 6-9.
  9. Hsuan-Teh Hu, Yu-Hon Lin. (2006) Ultimate Analysis of PWR Prestressed Concrete Containment Subjected to Internal Pressure, International Journal of Pressure Vessels and Piping, 83(3), pp.161-167. https://doi.org/10.1016/j.ijpvp.2006.02.030
  10. Iman, R.L., Conover, W.J. (1980) Small sAmple Sensitivity Analysis Techniques for Computer Models. with an Application to Risk Assessment, Communications in Statistics-Theory and Methods, 9(17), 1749-1842, 1980. https://doi.org/10.1080/03610928008827996
  11. Lee, J., Fenves G.L. (1998) Plastic-Damage Model for Cyclic Loading of Concrete Structures, Journal of Engineering Mechanics, 124(8), pp.892-900, https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)
  12. Lubliner, J., Oliver, J., Oller, S., Onate, E. (1989) A Plastic-Damage Model for Concrete, International Journal of Solids and Structures, 25, pp.299-329. https://doi.org/10.1016/0020-7683(89)90050-4
  13. Prinja, N.K., Kamatam, K., Curley, J.A. (2011) Predicting Pre-Stressed Concrete Containment Capacity, SMiRT, Div-III:Paper ID#628.
  14. OECD/NEA. (2005) CSNI International Standard Problem No.48 Containment Capacity, OECD/NEA Report, NEA/CSNI/R(2005)5.
  15. SIMULIA. (2012) Abaqus Analysis User's Manual, Dassault Systemes Simulia Corp., Providence, RI, USA.
  16. SIMULIA. (2012) Abaqus/CAE User's Manual, Dassault Systemes Simulia Corp., Providence, RI, USA.
  17. U.S. NRC. (2010) STANDARD REVIEW PLAN 3.8.1-Revision 3, NUREG-0800, U.S Nuclear Regulatory Commission, USA.