• Title/Summary/Keyword: 그리퍼

Search Result 87, Processing Time 0.023 seconds

Design and Evaluation of a Cinch Bag Typed Robotic Gripper for Fruit Harvesting (과수 수확을 위한 주머니 방식의 로봇 그리퍼 설계 및 검증)

  • Seongmo Choi;Myun Joong Hwang
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.1
    • /
    • pp.99-109
    • /
    • 2023
  • In this paper, the cinch bag typed fruit harvesting gripper was proposed. This gripper is focused on preventing problems that we found from the related research and setting the breakthrough as a design condition according to the harvest failures of other related studies. The cover part is designed to overcome the surrounding obstacles of target fruits such as tomato, Korean melon, and sweet pepper. The measurement of maximum load showed that the well-grasped target object, such as a spherical object with 65 mm of diameter, is unable to slip in a range of 0 kg to 10 kg. The fact that the gripper allows from 4 cm to 6 cm of positional error was shown in the measurement of positional error tolerance. And the cover part of this gripper showed that the suggested gripper can grab a target object without being obstructed by leaves and stems. Finally, it was proved that the gripper satisfied the design conditions through the measurement of contacting force, which showed it is appropriate for grasping an actual fruit without damage.

A study on the development of an automated device for the transportation of roof tiles using electromagnetic grippers (전자석 그리퍼를 이용한 기와 받침틀 이송 자동화 장비 개발에 관한 연구)

  • Byung-Soo Kang;Hyeong-Min Yoo
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.1-8
    • /
    • 2023
  • This study aims to enhance the price and quality competitiveness of imported tiles by developing a robotic tile production automation line. The development process involved several steps, such as requirement analysis, derivation of technical specifications, conceptual design, engineering feasibility review, detailed design, and production. Emphasis was placed on the transfer process of the tiles' molds, and technological advancements were achieved through engineering interpretation, feasibility review, and performance evaluation. The developed automation system incorporates key specifications to ensure a transfer success rate of over 90%, thereby ensuring stable transportation of the tiles and minimizing defect rates during production. The maximum weight capacity for tile pick-up was set above 6 kg, allowing effective handling of tiles weighing 6 kg or less in automated tasks. Furthermore, the system enables safe and precise movement of the tiles to the desired location, with a transfer distance of at least 1.3 m and a transfer speed exceeding 0.2 m/sec, thereby increasing production efficiency.

Development of robot system for production line automation (생산라인 자동화를 위한 로봇 시스템 개발)

  • Mim, Byeong-Ro;Kim, Duck-Ki;Jun, Yoo-Hea;Jung, Jun-Hee;Lee, Hwen;Yoo, Su-Ho;Cha, San-Lee;Lee, Dae-Weon;OH, Se-Bu
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.149-149
    • /
    • 2017
  • 본 논문은 생산라인 자동화를 위한 로봇으로 제조업 시장 확대에 가장 큰 걸림돌이 되는 가격 경쟁력 및 인력난 해소를 위해 설계하였으며 다양한 소재에 대응하기 위해 그리퍼를 교체하여 적용이 되도록 하였다. 자동화를 위한 로봇은 소재의 내외경 가공 및 검사까지 모든 공정이 일괄적으로 이루어 져야하며 LCD 모니터에 생산수량 및 불량률 등의 정보를 실시간으로 나타내어 효율적인 생산계획을 수립할 수 있도록 하였다. 생산라인 자동화를 위해 로봇의 설계는 Auto CAD를 이용하였다. 부품의 가공은 CNC에 적용하기 위해 자동공급장치를 설계하였다. 가공이 완료된 후 측정한 값을 LCD모니터를 통하여 작업자가 알아볼 수 있게 나타냈다. 외경 1은 40.405, 외경2는 32.201, 내경 1은 23.346, 내경 2는 34.302로 나타났다. 측정결과 불량 측정을 위해 측정부의 결과 값이 나타나며 불량이 발생하면 그래프를 이용하여 어떤 부위에서 발생했는지를 알 수 있도록 하였다. 또한 결과 값은 자동으로 저장되도록 하였다. 생산라인 자동화를 위해 100EA를 측정한 결과 외경 1은 40.40438, 외경2는 32.20164, 내경 1은 23.34830 내경 2는 34.30033의 평균값을 나타냈다. 측정값의 검증은 하이트게이지로 측정한 결과 0.003 이내의 결과를 나타냈다. 따라서 본 로봇 자동화 시스템을 적용한다면 생산성 향상 및 불량률 감소가 가능하여 인력대체 및 가격경쟁력이 가능하다고 판단된다.

  • PDF

Development of a Robotic Transplanter Using Machine Vision for Bedding Plants (기계시각을 이용한 육묘용 로봇 이식기의 개발)

  • 류관희;김기영;이희환;한재성;황호준
    • Journal of Bio-Environment Control
    • /
    • v.6 no.1
    • /
    • pp.55-65
    • /
    • 1997
  • This study was conducted to develop a robotic transplanter for bedding plants. The robotic transplanter consisted of machine vision system, manipulator attached with the specially designed gripper, and plug tray transfer system. Results of this study were as follows. 1. A machine vision system for a robotic transplanter was developed. The success rates of detecting empty cells and bad seedlings in 72-cell and 128-cell plug-trays for cucumber seedlings were 98.8% and 94.9% respectively. The success rates of identifying leaf orientation for 72- cell and 128-cell plug-trays were 93.5% and 91.0%, respectively. 2. A cartesian coordinate manipulator for a robotic transplanter with 3 degrees of freedom was constructed. The accuracy of position control was $\pm$ 1mm. 3. The robotic transplanter was tested with a shovel-type finger. Without considering leaf orientation, the success rates of transplanting healthy cucumber seedlings for 72-cell and 128-cell plug-trays were 95.5% and 94.5%, respectively. Considering leaf orientation, the success rates of transplanting healthy cucumber seedling in 72-cell and 128-cell plug-trays were 96.0% and 95.0%, respectively.

  • PDF

Design and test of cable based airborne capture mechanism for drone (케이블을 사용한 드론용 공중 포획 메커니즘의 설계 및 테스트)

  • Jung, Sanghoon;Nguyen, Van Sy;Kim, Byungkyu;An, Taeyoung
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.3
    • /
    • pp.10-16
    • /
    • 2020
  • We propose a capture mechanism based on the principles of fishing nets that can be mounted on the drone using cable. The gripper mechanism, mainly proposed for the drone is heavy, and is limited to catch standardized objects. In contrast, the proposed capture device in this paper is light, flexible, and can capture various types of objects from a long distance. The theoretical relationships between cables and mechanisms were analyzed. Finally, the capture device was designed and manufactured to be installed in the drone (DJI S900) to conduct capturing experiments for various objects and verify the validity.

Manipulator with Camera for Mobile Robots (모바일 로봇을 위한 카메라 탑재 매니퓰레이터)

  • Lee Jun-Woo;Choe, Kyoung-Geun;Cho, Hun-Hee;Jeong, Seong-Kyun;Bong, Jae-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.507-514
    • /
    • 2022
  • Mobile manipulators are getting lime light in the field of home automation due to their mobility and manipulation capabilities. In this paper, we developed a small size manipulator system that can be mounted on a mobile robot as a preliminary study to develop a mobile manipulator. The developed manipulator has four degree-of-freedom. At the end-effector of manipulator, there are a camera and a gripper to recognize and manipulate the object. One of four degree-of-freedom is linear motion in vertical direction for better interaction with human hands which are located higher than the mobile manipulator. The developed manipulator was designed to dispose the four actuators close to the base of the manipulator to reduce rotational inertia of the manipulator, which improves stability of manipulation and reduces the risk of rollover. The developed manipulator repeatedly performed a pick and place task and successfully manipulate the object within the workspace of manipulator.

Analysis on Downtime element of Gripper TBM based on field data (현장 데이터 분석을 통한 Gripper TBM의 Downtime 요소 분석)

  • Park, Jinsoo;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.393-402
    • /
    • 2021
  • The first TBM introduced in Korea was the gripper TBM, which was applied to the Gudeok Waterway Tunnel in 1985. In the initial stage of the introduction of the gripper TBM, many applications were mainly focused on waterway tunnels (Tunnel Mechanized Construction Design, 2008). Currently, the construction range of gripper TBM in Korea is widely applied to not only waterway tunnels, but also subways, railway tunnels, and TBM+NATM expansion. Overseas, gripper TBM is generally applied, and even when NATM tunnel is applied, it is applied as an exploration tunnel because of the excellent advance rate of gripper TBM and used as an evacuation tunnel after completion. Due to the fast excavation speed, the application of the gripper TBM in the rock section of weathered rock or higher can minimize the environmental and civil complaints caused by creating a large number of work areas when planning long tunnels or mountain tunnels. In this study, the work process of the general gripper TBM was analyzed by analyzing the construction cycle and the gripper TBM with a diameter of 2.6~5.0 m, which was applied the most in Korea. Downtime was investigated and analyzed.