• Title/Summary/Keyword: 균열 선단

Search Result 247, Processing Time 0.024 seconds

Intrinsic Enrichment of Moving Least Squares Finite Difference Method for Solving Elastic Crack Problems (탄성균열 해석을 위한 이동최소제곱 유한차분법의 내적확장)

  • Yoon, Young-Cheol;Lee, Sang-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.457-465
    • /
    • 2009
  • This study presents a moving least squares (MLS) finite difference method for solving elastic crack problems with stress singularity at the crack tip. Near-tip functions are intrinsically employed in the MLS approximation to model near-tip field inducing singularity in stress field. employment of the functions does not lose the merit of the MLS Taylor polynomial approximation which approximates the derivatives of a function without actual differentiating process. In the formulation of crack problem, computational efficiency is considerably improved by taking the strong formulation instead of weak formulation involving time consuming numerical quadrature Difference equations are constructed on the nodes distributed in computational domain. Numerical experiments for crack problems show that the intrinsically enriched MLS finite difference method can sharply capture the singular behavior of near-tip stress and accurately evaluate stress intensity factors.

Unsteadily Propagating Permeable Mode III Crack in Piezoelectric Materials (압전재료에서 비정상적으로 전파하는 투과형 모드 III 균열)

  • Lee, Kwang-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.985-996
    • /
    • 2012
  • An unsteadily propagating permeable crack in piezoelectric materials (PMs) under anti-plane shear mechanical loading and in-plane electric loading is studied. The equilibrium equations for a transiently propagating crack in a PM are developed, and the solutions on the stress and displacement fields for a permeable crack though an asymptotic analysis are obtained. The influences of piezoelectric constant, dielectric permittivity, time rate of change of the crack tip speed and time rate of change of stress intensity factor on the stress and displacement fields at the transiently propagating crack tip are explicitly clarified. By using the stress and displacements, the characteristics of the stress and displacement at a transiently propagating crack tip in a PM are discussed.

Stress Intensity Factor Calculation Using the Hybrid Formulation of Boundary and Finite Element Method (1st Report) (경계요소-유한요소 혼합법에 의한 균열선단의 응력강도계수 계산 (제1보))

  • In-Sik Nho;Chae-Whan Rim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.4
    • /
    • pp.38-45
    • /
    • 1998
  • It is a tedious and excessive time consuming process to model the local area of crack tip part of structures in calculation of stress intensity factors by FEM. So, in this paper, the hybrid method of FEM and BEM approach was formulated to overcome this type of problems. The multi-domained BEM was adopted to simplify the modelling process of complex geometry and singularity characteristics of crack tip part and the ordinary FEM modelling was used in the rest part. The example calculations shows very good results compared with analytic solutions and other numerical method.

  • PDF

Influence of Density Variation on Stress and Displacement Fields at a Propagating Mode-III Crack Tip in Orthotropic Functionally Graded Materials (밀도변화가 직교이방성함수구배재료에서 전파하는 모드 III 균열선단의 응력 및 변위장에 미치는 영향)

  • Lee, Kwang-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1051-1061
    • /
    • 2011
  • The influences of density variation on stress and displacement fields at a propagating Mode-III crack tip in orthotropic functionally graded materials (OFGMs) are studied. The crack propagates dynamically at a right angle to the gradient of physical properties. Three kinds of elasticity and density gradients are analyzed in this study. They are as follows: (1) the density varies without elasticity variation, (2) the directions of the density and elasticity gradients are opposite to each other, and (3) same. For these cases, the stress and displacement fields at the crack tip are developed and the dynamic stress intensity factors for propagating cracks are also studied. When the crack speed is low, the influence of density variation on the stresses and displacement is low. However, when the crack speed is high, this influence is very high.

A Study on the Crack Tip Plastic Region for Stable Crack Growth -304 Stainless Steel- (안정군열성장에 대한 군열선단 소성역에 관한 연구 -304 스테인리스 강-)

  • 황갑운
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.6
    • /
    • pp.1183-1192
    • /
    • 1989
  • 본 논문에서는 평면변형률 상태하에서 안정하게 성장하는 균열선단에 집중 되어있는 강소성역의 해석에 역점을 두어 재결정법과 탄.소성유한요소법을 도입하여 안정 성장균열 선단에 형성되는 균열 성장저항에 직접적인 영향을 미치고 있는 소성 역의 크기나 형태에 대한 실험 및 해석을 하였다.

An Interfacial Crack Model with Inclined Strip Plastic Zones under Mode III Load (모우드 III 하중 하에서 경사진 띠모양의 소성역을 가정한 계면균열 모델)

  • 박재학;엄윤용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.243-251
    • /
    • 1989
  • Assuming plastic zones spreading out on each slip plane of the two materials under out-of-plane shear loading, the size of each plastic zone is computed. The effect of the different frictional shear stresses in the two materials on the size of each plastic zone and the relative displacement at the crack tip are investigated. The relation between the J-integral in this model and the relative displacement at the crack tip is also obtained.

Evaluaton of Fatigue Crack Propagation Rate Using Parameter of Fatigue Strain Intensity Factor (피로변형확대계수 $\Delta$A를 이용한 피로크랙 전파속도 평가)

  • 박영철;오세욱;허정원;권혁동;김영광
    • Journal of Ocean Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.76-84
    • /
    • 1991
  • 본 연구는 피로수명 평가를 위한 새로운 파괴역학적 parameter의 확립에 관한 연구이다. 실질적으로 피로파괴가 일어나는 피로 균열선단의 국소영역에서 변형분포를 미소원형격자측정법을 이용하여 실험적으로 명확히 밝혀내었다. 그리고 이 결과를 기초로 하여 국소피로 변형율장을 대표할 수 있는 피로변형율 확대계수 $\Delta$A를 제안하였다. 또한 새로운 parameter $\Delta$A의 유효성을 여러 피로조건에서 검토한 결과, 균열선단 국소 영역에서 피로 변형율 확대계수 $\Delta$A에 의하여 피로 균열전파 속도평가를 일의적으로 나타낼 수 있음을 확인하였다.

  • PDF

Propagation of Crack in Concrete Subjected to Dynamic Loading (동적하중(動的荷重)을 받는 콘크리트의 구열(龜裂)성장)

  • Kang, Sung Hoo;Kim, Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.135-145
    • /
    • 1988
  • This study deals with the prediction of crack propagation in concrete mortar subjected to static and dynamic load. Total 54 CLWL-DCB(Crack-line-loaded-double-cantilever beam) concrete mortar specimens were tested to measure crack growth using ASTM 561-80. Main variables were sand to cement ratio and water to cement ratio. The resulting load(P)-COD(Crack Opening Displacement; $2V_1$) curves and COD-CTOD (Crack Tip Opening Displacement; $2V_2$) curves were analyzed to calculate effective crack length and physical crack length by way of ASTM 561-80 proposed. Replica crack length were also obtained directly during the test. The differences in crack propagation between under static load and under dynamic load were investigated.

  • PDF

구조 용강의 연성파괴에서 최대하중 예측

  • 구인회
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1992.03a
    • /
    • pp.47-58
    • /
    • 1992
  • 탄소성 재료의 파괴에서 최대하중을 계산할 수 있는 방법이 제시되었다. 사용된 재 료상수는 파괴개시인성, 항복강도, 진행된 균열선단에서 열림 변위 증분에 대한 균열성장의 비이고, 계산을 실험결과에 맞추어 재료상수를 결정한다. 이들 상수로 다른 시편의 최대하 중을 계산하는 간단한 방법을 평면변형하의 A572 강(상온)과 4533(B)강(-10C)에 적용하여 기존의 실험결과와 비교하였다. 또한 균열 선단 열림 변위와 J-적분값에 기초한 다른 방법 과 비교·논의되었다.

  • PDF

Estimation of Transient Creep Crack-tip Stress Fields for SE(B) specimen under Elastic-Plastic-Creep Conditions (탄성-소성-크리프 상태에서 SE(B) 시편의 천이크리프 균열 선단 응력장 평가)

  • Lee, Han-Sang;Je, Jin-Ho;Kim, Dong-Jun;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.1001-1010
    • /
    • 2015
  • This paper estimates the time-dependent crack-tip stress fields under elastic-plastic-creep conditions. We perform Finite-Element (FE) transient creep analyses for a Single-Edge-notched-Bend (SEB) specimen. We investigate the effect of the initial plasticity on the transient creep by systematically varying the magnitude of the initial step-load. We consider both the same stress exponent and different stress exponent in the power-law creep and plasticity to determine the elastic-plastic-creep behaviour. To estimation of the crack-tip stress fields, we compare FE analysis results with those obtained numerically formulas. In addition, we propose a new equation to predict the crack-tip stress fields when the creep exponent is different from the plastic exponent.