• Title/Summary/Keyword: 균열특성

Search Result 2,071, Processing Time 0.027 seconds

Ultrasonic Properties on Building Stones, Characteristics of Structural Deformation and Conservation States of the Sanctuary in Wat Phou Temple of Champasak, Lao PDR (라오스 밧푸 주사원의 보존현황과 석재의 초음파 물성 및 구조적 변형특성)

  • Lee, Chan Hee;Shin, Hyo Cheol;Han, Doo Roo
    • Journal of Conservation Science
    • /
    • v.33 no.6
    • /
    • pp.399-416
    • /
    • 2017
  • The 'Wat Phou and Associated Ancient Settlements within the Champasak Cultural Landscape' of Laos was designated as a UNESCO World Cultural Heritage in 2001. The uppermost structure of the Sanctuary in Wat Phou has been destroyed and being variably damaged, maintenance is required through scientific and systematic diagnosis. The Sanctuary of Wat Phou was constructed mainly using sandstones and bricks. There are physical damages including fracture, break out, exfoliation and interval as well as biological damages by lichen, mosses and weeds. According to the ultrasonic velocity measurement and property evaluation of the sandstones of the Sanctuary in Wat Phou, weathering index of the eastern side sandstones is 0.10 to 0.74 (mean 0.36), showing MW grade. Southern and northern side sandstones have relatively higher properties with average weathering indices of 0.30 and 0.32. The results of slope analysis of the Sanctuary, indicated that the 4th spot in the southern side has the largest slope of $5^{\circ}W$, seemingly due to the unstable ground around the Sanctuary. Based on the relative level measurement and past drawings, the Sanctuary is verified to have been located on ground with a certain slope rather than flatland. The ground of the southern side is inclined $1.51^{\circ}$ more than that of the northern side, which will affect the structural stability of the temple. The interval width of the selected southern spot is the largest with an average width of 159.5 mm, and the largest width is 328.3 mm at the top, since the width increases above rather than below, seemingly due to the unequal subsidence of the ground. Constant maintenance for conservation is required for the structural stability of the Sanctuary in Wat Phou, which was partly collapsed and has also suffered physical damage.

Physicochemical Variation by Weathering Degree of Granite from the Mireuksaji Temple Stone Pagoda, Iksan, Korea (익산 미륵사지석탑 화강암의 풍화에 의한 물리화학적 특성변화)

  • Yang, Hee-Jae;Han, Min-Su;Kim, Sa-Dug;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.23
    • /
    • pp.11-24
    • /
    • 2008
  • A physical characteristics and chemical compositions change by weathering on the granite were examined for the conservation treatment of the Mireuksaji temple stone pagoda. The natural weathered granite was collected from the Mt. Mireuk, and divided into the classification standards based on weathering degrees and strength measured by rock-test hammer. The results from comparison of the strength measured by undestructive rock-test hammer and the strength values converted from ultrasonic velocity showed that each strength measurement value was proportionate. The water absorption of the sample was 1.68 to 0.20%. The F-type of fresh rock was not naturally saturated and the WW-type was naturally saturated but took quite a long time. The water absorption was increased gradually in order of SW-type, the MW-type and the HW-type according to weathering condition. The CW-type samples showed the highest water absorption among the weathered classification samples. Through dyeing test, it was found out that only the feldspar was dyed out of the F-type and the WW-type. The SW-type and the MW-type were distinguished by the fact that plagioclase being dyed. And dyed area was expanded to quartz crack in HW-type and CW-type. Physical change by weathering of the rock-forming minerals could be classified with 3 grades. Through the XRD analysis, albite among the rock-forming mineral showed remarkable decrease. SEM-EDX analysis of the component change in the rock-forming minerals such as biotite, plagioclase, and orthoclase, showed that in case of highly-weathered grade samples compared with fresh samples, contents of the $Al_2O_3$, $K_2O$, $Na_2O$ increase and CaO, MgO decrease in the biotite, the CaO, $K_2O$ increase and $Na_2O$ decrease in the plagioclase, the $Al_2O_3$ a little increase and $K_2O$, $Na_2O$ decrease in the orthoclase. The results of extracted cation analysis using the powder samples of each weathering grade, the CaO, $Na_2O$, $K_2O$ and MgO are highly chemical variations in rock forming minerals and positive variation show high in the weathering grade of the WW-type and CW-type. This research will be used as an importance data to establish a plan for conservation treatment of composed stone in the Mireuksaji temple stone pagoda.

  • PDF

Studies on the Effect of Fiber Reinforcing upon Mechanical Properties of Concrete and Crack Mode of Reinforoed Concrete (섬유보강이 콘크리트의 역학적 특성과 철근콘크리트의 균열성상에 미치는 영향에 관한 연구)

  • 박승범
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.20 no.2
    • /
    • pp.4645-4687
    • /
    • 1978
  • This study was attempted to investigate the mechanical properties of concrete and crack control effects of reinforced concrete with steel and glass fiber. The experimental program includes tests on the properties of fresh concrete containing fibers, compressive strength, tensile strength, flexural strength, Young's modulus, Shrinkage and deformation of steel or glass fiber reinforced concrete. Also this study was carried out to investigate the effect of steel or glass fiber to retard the development in reinforced concrete subject to uniaxial tension and thus facilitate the use of steels of higher strength. The major conclusions that can be drawn from the studies are as follows: 1. The effect of the fibers in various mixes on fresh concrete confirmed that fibers do have a significant effect on the properties of fresh concrete, bringing much more stable and exhibiting a signiflcant reduction in surface bleeding, and that the cohesion is greatly improved and the internal resistance increases with fiber concentration. But the addition of an excess contents and length of fibers brings about the reduction of workability. 2. With the addition of steel fibers(1.5% Vol.) to concrete, the compressive strength as compared with plain concrete showed a very slight increase, but excess addition, over 1.5% Vol. of steel and glass fiber reduced its strength. 3. Splitting tensile strength of fiber reinforced concrete showed a significant increase tendency, as compared with plain concrete. In case of containing steel fiber (2.5%, 30mm), it showed that the maximum increase rate of 1.48 times as much rate, and in case of containing glass fiber (2.5%, 30mm), the increase rate of strength was 1.25 times as much rate. 4. Flexural strength of fiber reinforced concrete showed a significant tendency, as compared with plain concrete. Containing steel fiber (2.5%, 30mm) showed the maximum increase rate of 1.64 times as much rate and containing glass fiber (2.5%, 30mm) showed the increase rate of strength of 1.32 times as much rate, and in general, the 30mm length brougth the best results. 5. The strength ratio ($\sigma$b/$\sigma$c and $\sigma$t/$\sigma$c) increased, when steel fiber's average spacing was up to 3.05mm, but decreased when beyond 3.05mm, and it was confirmed that tensile or flexural strengths of steel fiber reinforced concrete are apparently governed by fiber's average spacing. 6. The compressive strain of fiber reinforced concrete showed a significant increasing tendency as the fiber was added, but Young's modulus. with the addition of steel and glass fibers, showed a slight decrease tendency. And according to the increase of flexural strength, a considerable increase was seen in toughness. 7. With the addition of fiber's the shrinkage of concrete was significantly decreased, in both case of adding steel fibers 12.5%, 30mm, and showed a significant decrease ratio, in average 30.4% and 36.7%, as compared with plain concrete. 8. With the increase of fiber volume fraction and length, the gained stress in reinforcing bar in concrete specimens increased in all crack widths, but at different rates, with the decrease of fiber diameter, the stress showed a considerable increasing tendency. And the duoform steel fibers showed the greatest improvement, as compared with the other types tested. 9. The influence of fiber dimensions in order of significanse on the machanical properties of concrete and the crack control of reinforced concrete was explained as follows: content, length, aspect ratio and dimeter.

  • PDF

Performance Test of Hypocenter Determination Methods under the Assumption of Inaccurate Velocity Models: A case of surface microseismic monitoring (부정확한 속도 모델을 가정한 진원 결정 방법의 성능평가: 지표면 미소지진 모니터링 사례)

  • Woo, Jeong-Ung;Rhie, Junkee;Kang, Tae-Seob
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • The hypocenter distribution of microseismic events generated by hydraulic fracturing for shale gas development provides essential information for understanding characteristics of fracture network. In this study, we evaluate how inaccurate velocity models influence the inversion results of two widely used location programs, hypoellipse and hypoDD, which are developed based on an iterative linear inversion. We assume that 98 stations are densely located inside the circle with a radius of 4 km and 5 artificial hypocenter sets (S0 ~ S4) are located from the center of the network to the south with 1 km interval. Each hypocenter set contains 25 events placed on the plane. To quantify accuracies of the inversion results, we defined 6 parameters: difference between average hypocenters of assumed and inverted locations, $d_1$; ratio of assumed and inverted areas estimated by hypocenters, r; difference between dip of the reference plane and the best fitting plane for determined hypocenters, ${\theta}$; difference between strike of the reference plane and the best fitting plane for determined hypocenters, ${\phi}$; root-mean-square distance between hypocenters and the best fitting plane, $d_2$; root-mean-square error in horizontal direction on the best fitting plane, $d_3$. Synthetic travel times are calculated for the reference model having 1D layered structure and the inaccurate velocity model for the inversion is constructed by using normal distribution with standard deviations of 0.1, 0.2, and 0.3 km/s, respectively, with respect to the reference model. The parameters $d_1$, r, ${\theta}$, and $d_2$ show positive correlation with the level of velocity perturbations, but the others are not sensitive to the perturbations except S4, which is located at the outer boundary of the network. In cases of S0, S1, S2, and S3, hypoellipse and hypoDD provide similar results for $d_1$. However, for other parameters, hypoDD shows much better results and errors of locations can be reduced by about several meters regardless of the level of perturbations. In light of the purpose to understand the characteristics of hydraulic fracturing, $1{\sigma}$ error of velocity structure should be under 0.2 km/s in hypoellipse and 0.3 km/s in hypoDD.

Experimental Evaluation of Bi-directionally Unbonded Prestressed Concrete Panel Impact-Resistance Behavior under Impact Loading (충돌하중을 받는 이방향 비부착 프리스트레스트 콘크리트 패널부재의 충돌저항성능에 대한 실험적 거동 평가)

  • Yi, Na-Hyun;Lee, Sang-Won;Lee, Seung-Jae;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.485-496
    • /
    • 2013
  • In recent years, frequent terror or military attacks by explosion or impact accidents have occurred. Examplary case of these attacks were World Trade Center collapse and US Department of Defense Pentagon attack on Sept. 11 of 2001. These attacks of the civil infrastructure have induced numerous casualties and property damage, which raised public concerns and anxiety of potential terrorist attacks. However, a existing design procedure for civil infrastructures do not consider a protective design for extreme loading scenario. Also, the extreme loading researches of prestressed concrete (PSC) member, which widely used for nuclear containment vessel, gas tank, bridges, and tunnel, are insufficient due to experimental limitations of loading characteristics. To protect concrete structures against extreme loading such as explosion and impact with high strain rate, understanding of the effect, characteristic, and propagation mechanism of extreme loadings on structures is needed. Therefore, in this paper, to evaluate the impact resistance capacity and its protective performance of bi-directional unbonded prestressed concrete member, impact tests were carried out on $1400mm{\times}1000mm{\times}300mm$ for reinforced concrete (RC), prestressed concrete without rebar (PS), prestressed concrete with rebar (PSR, general PSC) specimens. According to test site conditions, impact tests were performed with 14 kN impactor with drop height of 10 m, 5 m, 4 m for preliminary tests and 3.5 m for main tests. Also, in this study, the procedure, layout, and measurement system of impact tests were established. The impact resistance capacity was measured using crack patterns, damage rates, measuring value such as displacement, acceleration, and residual structural strength. The results can be used as basic research references for related research areas, which include protective design and impact numerical simulation under impact loading.

Material Characteristics and Deterioration Assessment of the Stone Buddhas and Shrine in Unjusa Temple, Hwasun, Korea (화순 운주사 석조불감의 재질특성과 풍화훼손도 평가)

  • Park, Sung-Mi;Lee, Myeong-Seong;Choi, Seok-Won;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.24
    • /
    • pp.23-36
    • /
    • 2008
  • The stone Buddhas and Shrine of Unjusa temple (Korea Treasure No. 797) in Hwasun formed in Koryo Dynasty are unique style which the Buddha faces each other the back parts of south and north within the stone Shrine. The stone Buddhas and Shrine are highly evaluated in historical, artistic and academic respects. But, the stone properties have been exposed in the open system various aspects of degradations weathered for a long time without specific protective facilities. The rock materials of the stone Buddhas and Shrine are about 47 blocks, and total press load is about 56.6 metric ton. The host rocks composed mainly of white grey hyaline lithic tuff and rhyolitic tuff breccia. In addition, biotite granite used as part during the restoration works. The chemical index of alteration for host tuffaceous rocks and the replacement granites range from 52.1 to 59.4 and 50.0 to 51.0, respectively. Weathering types for the stone Buddhas and Shrine were largely divided with physical, chemical and biological weathering to make a synthetic deterioration map according to aspects of damage, and estimate share as compared with surface area. Whole deterioration degrees are represented that physical weathering appeared exfoliation. Chemical weathering is black coloration and biological weathering of grey lichen, which show each lighly deterioration degrees. According to deterioration degree by direction of stone Buddhas and Shrine, physical weathering mostly appeared by 39.1% on the sorthern part, and chemical weathering is 61.2% high share on the western part. Biological weathering showed 38.3% the largest distribution on the southern part. Therefore, it is necessary to try hardening for the parts with serious cracks or exfoliations, remove secondary contaminants and organisms through regular cleaning. Also necessary to make a plan to remove moisture of the ground which causes weathering, and estimate that need established and scientific processing through clinical demonstration of conservation plan that chooses suitable treatment.

  • PDF

Characterization of Arsenic Immobilization in the Myungbong Mine Tailing (명봉광산의 광미 내 비소의 고정화 특성 연구)

  • Lee, Woo-Chun;Jeong, Jong-Ok;Kim, Ju-Yong;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.137-148
    • /
    • 2010
  • The Myoungbong mine located in Boseong-gun, Jellanamdo consists of Au-Ag bearing quartz veins which filled the fissures of Bulguksa granitic rocks of Cretaceous. The tailings obtained from the Myungbong mine were used to investigate the effects of various processes, such as oxidation of primary sulfides and formation(alteration) of secondary and/or tertiary minerals, on arsenic immobilization in tailings. This study was conducted via both mineralogical and chemical methods. Mineralogical methods used included gravity and magnetic separation, ultrasonic cleaning, and instrumental analyses(X-ray diffractometry, energy-dispersive spectroscopy, and electron probe microanalyzer) and aqua regia extraction technique for soils was applied to determine the elemental concentrations in the tailings. Iron (oxy)hydroxides formed as a result of oxidation of tailings were identified as three specific forms. The first form filled in rims and fissures of primary pyrites. The second one precipitated and coated the surfaces of gangue minerals and the final form was altered into yukonites. Initially, large amounts of acid-generating minerals, such as pyrite and arsenopyrite, might make the rapid progress of oxidation reactions, and lots of secondary minerals including iron (oxy)hydroxides and scorodite were formed. The rate of pH decrease in tailings diminished, in addition, as the exposure time of tailings to oxidation environments was prolonged and the acid-generating minerals were depleted. Rather, it is speculated that the pH of tailings increased, as the contribution of pH neutralization reactions by calcite contained in surrounding parental rocks became larger. The stability of secondary minerals, such as scorodite, were deteriorated due to the increase in pH, and finally arsenic might be leached out. Subsequently, calcimn and arsenic ions dissociated from calcites and scorodites were locally concentrated, and yukonite could be grown tertiarily. It is confirmed that this tertiary yukonite which is one of arsenate minerals and contains arsenic in high level plays a crucial role in immobilizing arsenic in tailings. In addition to immobilization of arsenic in yukonites, the results indicate that a huge amount of iron (oxy)hydroxides formed by weathering of pyrite which is one of typical primary minerals in tailings can strongly control arsenic behavior as well. Consequently, this study elucidates that through a sequence of various processes, arsenic which was leached out as a result of weathering of primary minerals, such as arsenopyrite, and/or redissolved from secondary minerals, such as scorodite, might be immobilized by various sorption reactions including adsorption, coprecipiation, and absorption.

Evaluation for Rock Cleavage Using Distribution of Microcrack Spacings (V) (미세균열의 간격 분포를 이용한 결의 평가(V))

  • Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.297-309
    • /
    • 2017
  • Jurassic granite from Geochang was analysed with respect to the characteristics of the rock cleavage. The comprehensive evaluation for rock cleavages was performed through the combination of the 16 parameters derived from the enlarged photomicrographs of the thin section and the spacing-cumulative frequency diagrams. The results of analysis for the representative values of these spacing parameters with respect to the rock cleavage are summarized as follows. First, the above parameters can be classified into group I (spacing frequency (N), total spacing ($1m{\geq}$), constant (a), exponent (${\lambda}$), slope of exponential straight line (${\theta}$), length of line (oa') and trigonometric ratios ($sin{\theta}$, $tan{\theta}$) and group II (mean spacing (Sm), difference value between mean spacing and median spacing (Sm-Sme), density (${\rho}$), lengths of lines (oa and aa'), area of a right-angled triangle (${\Delta}oaa^{\prime}$) and trigonometric ratio($cos{\theta}$). The values of the 8 parameters belonging to group I show an order of H(hardway, H1+H2)

Study for the Conservation Treatment of the Stele for National Preceptor Hongbeop from the Jeongtosa Temple Site in Chungju (충주 정토사지 홍법국사탑비의 보존과학적 연구)

  • Chae, Woomin;Hwang, Hyunsung
    • Conservation Science in Museum
    • /
    • v.19
    • /
    • pp.1-18
    • /
    • 2018
  • The Stele for National Preceptor Hongbeop from the Jeongtosa Temple site in Chungju is one of the most important stone cultural heritage items for exemplifying the style of the Goryeo era. Despite its obvious value, this relic has been stored in a weathered condition at the National Museum of Korea. It had suffered various dismantling and displacements during the Japanese colonial period and had long been exposed in the open air. The stele was selected as a subject for the Stone Monuments Restoration Project launched by the National Museum of Korea in 2015. In preparation for its outdoor exhibition as part of the restoration project, this study investigated the characteristics of its materials, produced a map of its deterioration from weathering, and carried out ultrasonic analysis of the materials to provide findings useful for conservation treatment. The materials analysis revealed that the turtle-shaped pedestal of the stele was made from two-mica granite consisting of medium-grained quartz, plagioclase, alkali feldspar, biotite, and muscovite. Its body stone is crystalline marble, the rock-forming mineral in which is medium-grained calcite in a rose-pink color with dark grey spots. The dragon top of the stele is made of crystalline marble, the major component of which is medium-grained calcite of a light-grey color. The deterioration consists of 21.5% abrasion on the stone body, with its south face most damaged, and 18.6% granular disintegration, with the north face most damaged. The ultrasonic material characterization conducted for mapping the general condition of weathering shows low values on the parts-assembly area of the turtle-shaped pedestal and on the upper portion of the stone body. It is considered that there is dislocation due to partial blistering and fracturing as well as to the differences in surface treatment. Prior to the outdoor exhibition of the stele, the surface was cleaned of contaminants and was consolidated based on the scientific investigation in order to prevent weathering from the external environment.

Lithological Characteristics and Deterioration Diagnosis of Dosolammaaebulsang (Rock-carved Buddha Statue of Dosolam) in the Seonunsa Temple, Gochang, Korea (고창 선운사 도솔암마애불의 암석학적 특성과 손상도 진단)

  • Park, Sung-Mi;Ryu, Keong-Seok;Choi, Hee-Soo;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.27 no.1
    • /
    • pp.101-114
    • /
    • 2011
  • The rock-carved Buddha statue at Dosolam (Korea Treasure No. 1200) of the Seonunsa temple in Gochang is unique style sculptured on natural rock cliff of 13.0m height. The Buddha statue is composed of volcanic complex with tuff, dacitic tuff breccia, tuff bereccia and lithic tuff. Especially, the Buddha statue is characterized by hydrothermal alteration and fragmentation on the upper and lower part. As a result of damage diagnosis, exfoliation and detachment of physical weathering are high of 11.3% and 9.3%, respectively. Infrared thermography analysis, exfoliation and micro-cracks occurred in the measuring parts that have not been confirmed by naked eyes. Chemical index of alteration and weathering potential index of host rock for the Buddha statue are 55.16 to 64.01 and 6.14 to 9.92 which are represented within highly weathering degree. In surface, dark black, reddish brown and white discoloration are observed prominently in the lower. Brown discoloration 6.9% is highest. According to the P-XRF measurements, high concentration of Fe in common, in part of dark black discoloration was Mn, white and brown discoloration in part of S and Ca content were higher. Biological weathering that yellowish brown and dark gray crustoes lichenes appeared by 20.8% and 13.3%, respectively. Therefore, comprehensive deterioration rate of Buddha statue show physical damage by 21.2%, discoloration for inorganic contaminants by 10.8% and biological damage by 39.4%. Ultrasonic velocity measurement carried out of Buddha statue on the surface by 555 points. Measured value of ultrasonic velocity was about 2,273m/s(1,067 to 3,215m/s, and weathering coefficient is 0.5(0.4 to 0.8) that progress on MW(moderately weathered) to HW(highly weathered) grade of rocks.