• 제목/요약/키워드: 규준 적용

Search Result 181, Processing Time 0.327 seconds

Undrained Analysis of Soft Clays Using an Anisotropic Hardening Constitutive Model: II. Numerical Analysis (비등방경화 구성모델을 적용한 연약 지반의 비배수 거동 해석 : II. 수치해석)

  • 오세붕
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.131-142
    • /
    • 1999
  • The objective of this study is to perform finite element analyses using the anisotropic hardening constitutive model on the basis of the total stress concept. An anisotropic hardening constitutive model had been developed in a companion paper, and was then formulated by implicit stress integration and consistent tangent moduli. A nonlinear finite element analysis program was coded including the algorithm, and as a result, the nonlinear solution was accurately calculated and converged to be asymptotically quadratic. In the analysis of a test embankment it was found that the proposed model could predict the displacement of soils more reasonably than the analysis with von Mises type model. In addition the proposed model could predict accurately the actual behavior through the reanalysis of the problem by a reasonable evaluation of the strength parameter.

  • PDF

A Study on the Development of Dewatering Mold Form for Performance Improvement of Concrete (콘크리트 성능개선을 위한 탈수거푸집공법의 실용화 연구)

  • Woo Kwang-Min;Lee Hak-Ki
    • Korean Journal of Construction Engineering and Management
    • /
    • v.4 no.4 s.16
    • /
    • pp.88-95
    • /
    • 2003
  • Dewatering mold form get many holes on the surface to drain excessive water from combine concrete. While fiber is adhered to the forms inter surface, that makes it possible to improve concrete workability by draining excess water through the holes. We can expect the outer layer to solidify and to compact and get improvement of concretes durability. Maybe, it is valuable enough that dewatering mold form is put to practical use. On this study, the purpose is to obtain fundamental data for effective dewatering mold and properties of exposed concrete with the form, and ultimately, is to propose practical theory.

The Characteristics of pH Variations and Lead transport during Electrokinetic Remediation of soil Contaminated by Heavy Metal (중금속 오염토의 Electrokinetic 정화 처리시 pH 발현과 납 제거의 전극 간 특성)

  • 한상재;김수삼
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.13-23
    • /
    • 2001
  • In this study, the characteristics of pH variations and contaminant distribution in soil are investigated during electrokinetic treatment for the purpose of restoring contaminated soil with heavy metal. For these objects, laboratory test for the kaolin contaminated by lead was performed. During electrokinetic treatment, lead was transported from anode to cathode. And 75% of lead removed within 80% region of the specimen. Most lead, however, that transported from anode to cathode precipitated in the vicinity of cathode compartment, thus the amount of lead removed by electroosmosis was little. Electrokinetic treatment satisfied regulation criteria of Korean Soil Environment Conservation Law within almost region of the specimen. But enhancement methods can be regarded as inevitable requisite for the cathode region.

  • PDF

A Constitutive Model for Lightly Overconsolidated Clays (미약한 과압밀상태의 점토지반에 대한 구성모델)

  • 이승래;오세붕
    • Geotechnical Engineering
    • /
    • v.8 no.4
    • /
    • pp.17-30
    • /
    • 1992
  • Constitutive relations for lightly overconsolidated state of clayey soils. as well as normally consolidated state of those, play an important role in the analyses of geotechnical structures in clay deposits. For the practical point of view, a constitutive model applicable to lightly overconsolidated soils should be developed to easily evaluate the model parameters, and to precisely predict the various behavior of OC soils. For that purpose, a constitutive model for the lightly overconsolidated soil behavior has been proposed to rep- resent the undrained behavior which can be normalized using equivalent pressure, p. , Yielding within the initial yield surface is modeled exclusively using the given normally consolidated model parameters only. Furthermore, the proposed model can be applied to consider the effects of overconsolidation, secondary consolidation, and stress relaxation. The measured behavior in undrained triaxial tests has been Predicted easily and precisely in comparison with other models.

  • PDF

Modeling Scheme for the Six-components Force Measurements of Solid-propellant Rocket Motors (고체 추진기관 6분력 시험대의 모델링 기법)

  • 박익수;이규준;윤일선;김중근
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.3
    • /
    • pp.79-86
    • /
    • 2001
  • The six-components force measurements systems for rocket motors are used to measure multi components force generated by TVC(Thrust Vector Control) motors. This paper suggested the modeling scheme which is used in preliminary design and test analysis procedure and which can be applied to the existing other test stand in operation. The model whose parameters are determined by least square method makes the design engineer build the test stand to satisfy all kinds of requirements such as accuracy, operating condition and structural stability without tradeoff among the requirements. The experimental results shows that the proposed model has better accurate performances than those of other existing model.

  • PDF

Seismic Resistance Response of Railway Station Building Retrofitted by Metallic Dampers (강재댐퍼를 적용한 역사 건물의 내진 응답)

  • Lee, Hyun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.82-88
    • /
    • 2010
  • The purpose of this research is a seismic capacity evaluation and strengthening of existing railway station buildings, which were constructed before the seismic design code activated. The seismic capacity of 2nd story RC station building is evaluated by using nonlinear time-history analysis. Analysis results are checked by story drift ratio and story shear, which are described in design code. As a result, the story shears are exceeding the base shear of the design code, the appropriate seismic strengthening methods are needed. To improve the seismic capacity, metallic dampers are used. Evaluation parameters are metallic damper shape and damper installation methods. Dampers are installed in four places in X and Y directions of station buildings. By reviewing of time-history analysis results, the metallic damper, which is installed inverted K-brace type, shows a better seismic performance than other damper shape and installation methods.

Study of an Estimation Method of Thrust Measurement Uncertainty for the Solid Rocket Motors (고체 추진기관의 추력측정불확도 추정 방법 연구)

  • Lee, Kyu Joon;Kwon, Younghwa;Lee, Young Won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.3
    • /
    • pp.18-30
    • /
    • 2020
  • This study deals an estimation method of thrust measurement uncertainty in solid rocket motors. Guidelines of the force measurement uncertainty estimation have been provided by ISO, domestic and international organizations. However, all of them are described by focusing on the force calibration machines and force transducers with a conceptually-driven way. Thus the guidelines cannot be directly applicable to uncertainty estimation of calibration equation and its linear approximation, which are critical error sources in the thrust measurement. In this paper, the equations taking into account effects of both error sources are derived based on fundamental concepts of measurement uncertainty. These are applied to the real thrust measurement system where a relatively simple estimation method for the thrust measurement uncertainty is proposed.

Three-Dimensional Limit Equilibrium Stability Analysis of Spile-Reinforced Shallow Tunnel

    • Geotechnical Engineering
    • /
    • v.13 no.3
    • /
    • pp.101-122
    • /
    • 1997
  • A spiting reinforcement system is composed of a series of radially installed reinforcing spites along the perimeter of the tunnel opening ahead of excavation. The reinforcing spill network is extended into the in-situ soil mass both radially and longitudinally The sailing reinforcement system has been successfully used for the construction of underground openings to reinforce weak rock formations on several occasions. The application of this spiting reinforcement system is currently extended to soft ground tunneling in limited occasions because of lack of reliable analysis and design methods. A method of threetimensional limit equilibrium stability analysis of the smile-reinforced shallow tunnel in soft ground is presented. The shape of the potential failure wedge for the case of smile-reinforced shallow tunnel is assumed on the basis of the results of three dimensional finite element analyses. A criterion to differentiate the spill-reinforced shallow tunnel from the smile-reinforced deep tunnel is also formulated, where the tunnel depth, soil type, geometry of the tunnel and reinforcing spites, together with soil arching effects, are considered. To examine the suitability of the proposed method of threedimensional stability analysis in practice, overall stability of the spill-reinforced shallow tunnel at facing is evaluated, and the predicted safety factors are compared with results from twotimensional analyses. Using the proposed method of threetimensional limit equilibrium stability analysis of the smile-reinforced shallow tunnel in soft ground, a parametric study is also made to investigate the effects of various design parameters such as tunnel depth, smile length and wadial spill spacing. With slight modifications the analytical method of threeiimensional stability analysis proposed may also be extended for the analysis and design of steel pipe reinforced multi -step grouting technique frequently used as a supplementary reinforcing method in soft ground tunnel construction.

  • PDF

Experimental Study on Hysteretic Behavior of 100 MPa Ultra High-Strength Concrete Tied Columns (100 MPa 초고강도 콘크리트 띠철근 기둥의 이력거동에 관한 실험적 연구)

  • Kim, Jong-Keun;Shin, Sung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.161-168
    • /
    • 2006
  • An experimental investigation was conducted to examine the hysteretic behaviors of ultra-high strength concrete tied columns. The purpose of this study is to investigate the safety of ultra-high strength concrete columns with 100 MPa compressive strength for the requirement of ACI provisions. Eight 1/3 scaled columns were fabricated to simulate an 1/2 story of actual structural members with the cross section $300{\times}300mm$ and the aspect ratio 4. The main variables are axial load ratio, configurations and volumetric ratios of transverse reinforcement. The results show that the deformability of columns are affected by the configurations and volumetric ratios of transverse reinforcement. Especially, it has been found that the behavior of columns are affected by axial load ratio rather than the amounts and the configurations of transverse reinforcement. Consequently, to secure the ductile behavior of 100 MPa ultra-high strength concrete columns, ACI provisions for the requirement of transverse steel may considered axial load level and the details of transverse reinforcement.

A Study on the Simple Design Method of Semi-Rigid Connection with Angle in Steel Structure (강구조에서 ㄱ형강을 이용한 반강접 접합의 간편 설계)

  • Heo, Myong-Jae;Kim, Hong-Geun;Choi, Won-Gu
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.261-273
    • /
    • 2011
  • Recently, the demands for steel frame are increasing because of the trend and due to the demand for bigger and higher buildings. In the analysis of typical steel frame, connections are based on the idealized fixed or pinned connection. A fixed connection assumes that the relative angle of each member before deformation is the same after the transformation. Therefore, the stiffener reinforces the connection to sufficient rigidity and stability of the panel zone. In the economical aspect, however, the necessity of connection that the stiffener reinforcement has omitted is increasing due to the excessive production as well as labor costs of connection. In contrast, pinned connection is assumed that bending moments between the beams and columns do not transfer to each member. This is easy to make in the plant and the construction is simple. However, the structural efficiency is reduced in pinned connection because connection cannot transfer moments. The introduction of this semirigid process can decide efficient cross-sectional dimensions that promote ease in the course of structural erection, as performed by members in the field-a call for safety in the entire frame. Therefore, foreign countries exert efforts to study the practical behavior and the results are applied to criterion. This paper analyzes the semirigid connection of domestic steel by design specifications of AISC/LRFD and make data bank that pertain to each steel. After wards, the results are compared to those of idealized connection; at the same time, this paper presents a design method that matches economic efficiency, end-fixity, and rotational stiffness.