• Title/Summary/Keyword: 귀추적 추론

Search Result 30, Processing Time 0.024 seconds

Epistemological Implications of Scientific Reasoning Designed by Preservice Elementary Teachers during Their Simulation Teaching: Evidence-Explanation Continuum Perspective (초등 예비교사가 모의수업 시연에서 구성한 과학적 추론의 인식론적 의미 - 증거-설명 연속선의 관점 -)

  • Maeng, Seungho
    • Journal of Korean Elementary Science Education
    • /
    • v.42 no.1
    • /
    • pp.109-126
    • /
    • 2023
  • In this study, I took the evidence-explanation (E-E) continuum perspective to examine the epistemological implications of scientific reasoning cases designed by preservice elementary teachers during their simulation teaching. The participants were four preservice teachers who conducted simulation instruction on the seasons and high/low air pressure and wind. The selected discourse episodes, which included cases of inductive, deductive, or abductive reasoning, were analyzed for their epistemological implications-specifically, the role played by the reasoning cases in the E-E continuum. The two preservice teachers conducting seasons classes used hypothetical-deductive reasoning when they identified evidence by comparing student-group data and tested a hypothesis by comparing the evidence with the hypothetical statement. However, they did not adopt explicit reasoning for creating the hypothesis or constructing a model from the evidence. The two preservice teachers conducting air pressure and wind classes applied inductive reasoning to find evidence by summarizing the student-group data and adopted linear logic-structured deductive reasoning to construct the final explanation. In teaching similar topics, the preservice teachers showed similar epistemic processes in their scientific reasoning cases. However, the epistemological implications of the instruction were not similar in terms of the E-E continuum. In addition, except in one case, the teachers were neither good at abductive reasoning for creating a hypothesis or an explanatory model, nor good at using reasoning to construct a model from the evidence. The E-E continuum helps in examining the epistemological implications of scientific reasoning and can be an alternative way of transmitting scientific reasoning.

Roles of Models in Abductive Reasoning: A Schematization through Theoretical and Empirical Studies (귀추적 사고 과정에서 모델의 역할 -이론과 경험 연구를 통한 도식화-)

  • Oh, Phil Seok
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.4
    • /
    • pp.551-561
    • /
    • 2016
  • The purpose of this study is to investigate both theoretically and empirically the roles of models in abductive reasoning for scientific problem solving. The context of the study is design-based research the goal of which is to develop inquiry learning programs in the domain of earth science, and the current article dealt with an early process of redesigning an abductive inquiry activity in geology. In the theoretical study, an extensive review was conducted with the literature addressing abduction and modeling together as research methods characterizing earth science. The result led to a tentative scheme for modeling-based abductive inference, which represented relationships among evidence, resource models, and explanatory models. This scheme was improved by the empirical study in which experts' reasoning for solving a geological problem was analyzed. The new scheme included the roles of critical evidence, critical resource models, and a scientifically sound explanatory model. Pedagogical implications for the support of student reasoning in modeling-based abductive inquiry in earth science was discussed.

Drawing Elements of Inquiry in Field Geology and Analyzing Field Geology Education in Previous Studies (야외 지질학 탐구 요소 추출 및 지질 답사 교육 문헌 분석)

  • Jung, Chanmi;Shin, Donghee
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.3
    • /
    • pp.465-481
    • /
    • 2017
  • This study is a research synthesis analyzing how field geology education is conducted in domestic and foreign countries in the recent 20 years and how it reflects the characteristics of authentic geologic inquiry. For these purposes, we first drew five elements of inquiry in field geology (observation, representation, abductive reasoning, spatial thinking, and diachronic thinking) considering the field geologists' actual research method as well as its pedagogical significance in science education. We developed analysis criteria for field geology education. The 53 cases were analyzed based on each element of inquiry in field geology and its sub-elements, and also the tendency of overall elements. As a result, observation and representation were included in most cases, but there appeared less frequency in order of abductive reasoning, spatial thinking, and diachronic thinking. For observation, the ratio of purposive observation and autonomous observation is high. For representation, both visualizing and linguistic type of representation and free-form representation appear frequently. For abductive reasoning, the step of generating hypothesis is often included and the hypothesis tends to be about the geological formatting process. For spatial thinking, type of self-location and perception of the spatial configuration of the structure appear at a high rate. For diachronic thinking, type of stratigraphic sequence is the most frequent. The proportions of the cases including three or more elements of inquiry in field geology consist 87% of the total. We suggested implications for improving geological fieldwork as authentic science inquiry in the future.

The Cognition Changes Related to the Teaching Methods of "Light" Chapter for 7th Grade as Experienced by Science Teachers in Abduction Thinking (귀추적 사고를 경험한 과학 교사들의 중학교 1학년 빛 단원 지도 방식에 대한 인식의 변화)

  • Kim, Young-Sim;Paik, Seoung-Hey
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.6
    • /
    • pp.507-518
    • /
    • 2008
  • The purpose of this study was to find out the difficulties of teaching the chapter on 'ight', experience of learning, teaching methods, and thinking types of 10 science teachers of the master's course in chemistry education. Discussion course for abduction thinking was carried out during 12 hours after the interview. Data were collected from individual interviews of 4 teachers among the 10 subjects and from the reports of the science teachers after the discussion course. From the data, it was found that most of the science teachers had suffered difficulty in teaching the chapter on light before the discussion course. Most of them had tried to teach drawing the path of light, but there was little teaching effect. Their teaching methods were similar to the method of what they had learned. During the course, the teachers recognized they could not see the path of light directly, and it needed inferring from image. From the abduction thinking, the teachers recognized the meaning of image and gained concrete methods in teaching students.

Thomas Young's Problem Solving through Analogical Reasoning in the Process of Light Inference Theory Formation and Its Implications for Scientific Creativity Education (창의적 과학자 토마스 영(T. Young)의 빛의 간섭 이론 형성과정에서의 비유추론을 통한 문제해결과 과학창의성 교육적 함의)

  • Kim, Wonsook;Kim, Youngmin;Seo, Hae-Ae;Park, Jongseok
    • Journal of Gifted/Talented Education
    • /
    • v.23 no.5
    • /
    • pp.817-833
    • /
    • 2013
  • The study aims to analyze Thomas Young's problem solving processes of analogical reasoning during the formation of the interference theory of light, and to draw its implications for secondary science education, particularly for enhancing creativity in science. The research method employed in the study was literature review of the papers which Young himself had written about sound wave and property of light. His thinking processes and specific features in his thought that were obtained through analysis of his papers about light are as follows: Young reconsidered Newton's experiments and observations, and reinterpreted Newton's results in the new viewpoints. Through this analysis, Young discovered that Newton's interpretation about his own experiments and observations was faulty in a certain point of view and new interpretation is necessary. Based on the data, it is hypothesized that colors observed on thin plates and colors appeared repeatedly on Newton's ring are appeared because of the effect of light interference. Young used analogical reasoning during the process of inference of similarity between sound and light. And he formulated an hypothesis on the interference of light through using abductive reasoning from interference of water wave, and proved the hypothesis by constructing an creative experimental device, which is called a critical experiment. It is implicated that the analogical reasoning and experimental devices for explaining the light interference which Young created and used can be utilized for school science education enhancing creativity in science.

Suggestion for Science Education through the Analysis of Archimedes' Creative Problem Solving Process (Archimedes의 창의적 문제해결과정 분석을 통한 과학교육에의 함의 고찰)

  • Lee, Sang Hui;Paik, Seoung Hey
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.1
    • /
    • pp.30-45
    • /
    • 2013
  • In this study, we developed a model for analyzing scientists' creative thinking processes, and analyzed Archimedes' thinking process in solving the golden crown problem. As results show, scientists' complex problem solving processes could be represented as a repeating circular model, and the fusion of processes of diverse thinking required for scientists' creativity could be analyzed from the case. Also in this study, we represented the role of experiments in scientists' creative discovery, and investigated the reasons for the difference between the viewpoints of textbooks and historic facts. We found the importance of abductive reasoning and advance knowledge in creative thinking. Archimedes solved the golden crown problem creatively by crossing the scientific thought of dynamics and the daily thought of baths. In this process, abductive reasoning and advance knowledge played an important role. Besides Archimedes' case, if we would reconstruct the creative discovery processes of diverse scientists' in textbooks, students could raise their creative thinking ability by experiencing these processes as educational steps.

Development of an Inquiry Analysis Framework Based on the Features of Earth Science Inquiry Methodology and the Analysis of Inquiry Activities in the 8th Grade 'Earth History and Diastrophism' Unit (지구과학 탐구의 특징을 반영한 탐구 활동의 분석틀 개발 및 '지구의 역사와 지각 변동' 단원의 탐구 활동 분석)

  • Kim, Chan-Jong;Park, In-Sun;An, Hui-Soo;Oh, Phil-Seok;Kim, Dong-Young;Park, Young-Shin
    • Journal of the Korean earth science society
    • /
    • v.26 no.8
    • /
    • pp.751-758
    • /
    • 2005
  • The purpose of this study was to develop an inquiry analysis framework based on the features of earth science inquiry methodology and to analyze inquiry activities in the 8th grade 'Earth History and Diastrophism' unit by using this framework. The framework classified earth science methods as logical inference, hermeneutic, and historical methods, each of which was subdivided in consideration of its subordinate methods and characteristics. The analysis revealed that the logical inference method reflected in the unit as the 'abductive method' (70%) was used more frequently than the 'inductive' (23%) and 'deductive' (22%) methods. The hermeneutic method was found in terms of the 'forestructures of understanding' (92%), 'circular reasoning' (9%). and 'historical nature of human understanding' (17%). The historical method also used as the 'constructing proper taxonomy' (53%), 'adhering to the modem principle of uniformitarianism' (47%), and 'relic interpretation' (41%) were identified with ratios more fester than those for the 'place substituting for time in stage theorizing' (3%) and 'evaluating independent lines of inquiry for convergence' (3%).

An Exploratory Study of the 'Method of Multiple Working Hypotheses' as a Method of Earth Scientific Inquiry (지구과학의 탐구 방법으로서 '복수 작업가설의 방법'의 특징에 관한 탐색적 연구)

  • Oh, Phil Seok
    • Journal of the Korean earth science society
    • /
    • v.39 no.5
    • /
    • pp.501-515
    • /
    • 2018
  • In this study, the method of multiple working hypotheses (MMWH) as a method of earth scientific inquiry was applied in a context of abductive reasoning about the formation of a rock with a specific structure, and the characteristics of MMWH revealed in the reasoning process were explored. Participants were 31 senior undergraduate students enrolled in a course in a university of education. As part of the course, the participants performed abductive inquiry with multiple working hypotheses about the formation of a rock. The students were asked to record both the processes and results of their reasoning in sketchbooks. The content of the students' sketchbook reports was analyzed according to the principle of analytic induction. Results demonstrated four assertions. First, the participants' working hypotheses were suggested in the use of resource models, and the adaption of the resource models often occurred in this process. Second, the perceptual properties of evidence influenced the activation of the resource models. Third, the kinds of observed evidence and the different interpretations of evidence resulted into different judgments on working hypotheses. Fourth, sometimes new hypotheses were generated by the combination of alternative hypotheses. Implications of these findings for earth science education and relevant research were discussed.

A Grounded Theory on the Process of Scientific Rule-Discovery- Focused on the Generation of Scientific Pattern-Knowledge (과학적 규칙성 지식의 생성 과정: 경향성 지식의 생성을 중심으로)

  • 권용주;박윤복;정진수;양일호
    • Journal of Korean Elementary Science Education
    • /
    • v.23 no.1
    • /
    • pp.61-73
    • /
    • 2004
  • The purpose of this study was to suggest a grounded theory on the process of undergraduate students' generating pattern-knowledge about scientific episodes. The pattern-discovery tasks were administered to seven college students majoring in elementary education. The present study found that college students show five types of procedural knowledge represented in the process of pattern-discovery, such as element, elementary variation, relative prior knowledge, predictive-pattern, and final pattern-knowledge. Furthermore, subjects used seven types of thinking ways, such as recognizing objects, recalling knowledges, searching elementary variation, predictive-pattern discovery, confirming a predictive-pattern, combining patterns, and selecting a pattern. In addition, pattern-discovering process involves a systemic process of element, elementary variation, relative prior knowledge, generating and confirming predictive-pattern, and selecting final pattern-knowledge. The processes were shown the abductive and deductive reasoning as well as inductive reasoning. This study also discussed the implications of these findings for teaching and evaluating in science education.

  • PDF

A Grounded Theory on the Process of Generating Hypothesis-Knowledge about Scientific Episodes (과학적 가설 지식의 생성 과정에 대한 바탕이론)

  • Kwon, Yong-Ju;Jeong, Jin-Su;Kang, Min-Jeong;Kim, Young-Shin
    • Journal of The Korean Association For Science Education
    • /
    • v.23 no.5
    • /
    • pp.458-469
    • /
    • 2003
  • Hypothesis is defined as a proposition intended as a possible explanation for an observed phenomenon. The purpose of this study was to generate a grounded theory on the process of undergraduate students' generating hypothesis-knowledge about scientific episodes. Three hypothesis-generating tasks were administered to four college students majored in science education. The present study showed that college students represented five types of intermediate knowledge in the process of hypothesis generation, such as question situation, hypothetical explicans, experienced situation, causal explicans, and final hypothetical knowledge. Furthermore, students used six types of thinking methods, such as searching knowledges, comparing a question situation and an experienced situation, borrowing explicans, combining explicans, selecting an explican, and confirming explicans. In addition, hypothesis-generating process involves inductive and deductive reasoning as well as abductive reasoning. This study also discusses the implications of these findings for teaching and evaluating in science education.