• Title/Summary/Keyword: 굽힘 효과

Search Result 225, Processing Time 0.026 seconds

Structural Analysis of Thin-walled Beams by Using a Mixed Finite Element Method (혼합형 유한요소법에 의한 박판보의 구조해석)

  • Park, Seong-Whan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.4
    • /
    • pp.99-107
    • /
    • 1997
  • A mixed type finite element method is applied to the nonuniform shear warping beam theory which is very useful for the structural analysis of thin-walled sectional beams considering the shear deformation. As known generally, it is shown that the mixed type finite element method, compared with the displacement type one, can give more balanced accuracy of results in calculating the stresses and displacements of the structure. In this paper, one typical example, the flexural-torsional problem of a discontinuously variable sectional beam under coupled end torsional moments, is selected and analyzed to validate the usefulness of the developed beam element.

  • PDF

Effect of Ankle Position on Hallux Flexion Force and Muscles Activity of Abductor Hallucis (발목자세가 엄지발가락 굽힘 힘과 엄지벌림근의 근활성도에 미치는 효과)

  • Jung, Doyoung
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.5 no.2
    • /
    • pp.43-50
    • /
    • 2017
  • Purpose : There is no validated method for measuring the toe flexor strength that can isolate the intrinsic muscles of the foot from the extrinsic muscles. This study compared the hallux flexion force (HFF) and muscle activity in the foot and ankle according to ankle position [plantarflexion (PF), neutral, and dorsiflexion (DF)]. Method : The study enrolled 17 subjects. In the sitting position, the HFF and activities of the abductor hallucis (AbdH), tibialis anterior (TA), and gastrocnemius (GCM) muscles were measured using a digital dynamometer and a wireless electromyography system, respectively. Subjects were instructed to flex the great toe maximally in three different ankle positions. Three 5-second trials were performed to measure the HFF and muscle activities in each condition. Repeated-measures ANOVA was used to compare the variables and paired t-tests with the Bonferroni correction were used for post-hoc pair-wise comparisons. The significance level was set at .016. Result : The HFF in DF was significantly greater than in any other ankle position (p<.01). The TA activity was greatest in ankle DF and that of the GCM was greatest in PF (both p<.01). However, there was no significant difference in AbdH activity according to ankle position. Conclusion : These results suggest that selective strength measurement of the foot intrinsic muscles in HFF should be performed with the ankle in the neutral position.

A Study on the Effect of Transversal Warping In Thick Plate (두꺼운 판의 전단 Warping 영향에 대한 연구)

  • Lee, Sang-Gab;Choi, Won-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.1
    • /
    • pp.77-89
    • /
    • 1996
  • An enormous amount of efforts has been devoted to the development of finite elements for the bending problem of thick plates, especially based on Mindlin plate theory. Here, an approximate Constant Shear Angle Theory is usually used to take a transverse shear deformation of thick plate into consideration, which cannot be effectively considered the influence of transversal warping of cross-section with an increase of thickness. It might be the best way to represent the exact cross-sectional warping of the plate. The overall objective of this study is to develop a new formulation of plate including shear deformation and transversal warping, to perform extensive parametric studies comparing its results with those from Mindlin plate formulation, and to gain further insight into the influence of shear deformation and transversal warping of thick plate.

  • PDF

Changes in Physical Properties of wool-Blended Fused Fabrics after Pressing and/or Ory Cleaning(Part I) (모 접착포의 프레싱 처리와 드라이크리닝 처리에 의한 물성의 변화(제1보))

  • Jee, Ju-Won;Lee, Dae-Hoon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.10
    • /
    • pp.1809-1820
    • /
    • 2001
  • 본 연구에서는 모 직물의 접착심과의 접착 후, 프레싱 처리 후, 드라이클리닝 처리 후 프레스로 처리한 실제의 의복의 관리와 생산 면에서 접할 수 있는 직물 변화에 대하여 물성 변화를 살펴보았다. 겉감으로는 신사복 춘하용 모 100% 또는 모혼방 직물 15종류를 사용하였으며 심지로는 신사복에 많이 쓰이는 3종류 심지를 사용하였다. KES시스템을 이용하여 직물의 접착후, 프레싱 처리 후, 드라이크리닝과 프레싱 처리 후의 물성 변화를 시험하였으며 다음과 같은 결과를 얻었다. 1) 접착 후 EM은 대체로 감소하지만 강성과 이력 현상은 증가하는 것으로 나타났다. 결과로 KOSHI, SHARI, HARI는 증가하고 THV는 감소하여 태는 접착으로 저하되었다. 2) 프레싱 처리 후는 접착 후와 큰 차이를 보이지 않는다. 마찰특성에서 좀더 매끄러워지고 마찰 계수는 증가하는 것으로 나타났다. 3) 드라이크리닝과 프레싱 처리 후의 물성의 변화에서는 위사 방향의 큰 값을 갖는 경우에 감소하는 것으로 나타났다. 굽힘 강성과 전단강성은 감소하였지만 이력은 증가하는 흥미로운 결과를 보인다. 드라이클리닝 용제의 효과로 여겨진다. 무게는 증가하여 직물이 처리 후 수축한 것으로 나타났다. 프레싱 처리 후와 비교시 KOSHI, SHARI, HARI와 FURAMl는 감소하고 THV는 증가하여 태가 향상하였다.

  • PDF

Bending Strength and Crack Healing of SiCf/SiC Composite Material (SiCf/SiC 복합재료의 굽힘 강도 특성 및 균열 치유 효과)

  • Ahn, Seok-Hwan;Do, Jae-Yoon;Moon, Chang-Kwon;Nam, Ki-Woo
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.94-102
    • /
    • 2013
  • Manufactured $SiC_f/SiC$ composites by NITE method was investigated fracture characteristics according to the size of the surface crack. Coated surface crack with a $SiO_2$ colloid in several ways was evaluating the possibility of healing. The strength of CCS and UCS is 313 and 230MPa, respectively and it is about 1/3 of the SPS. Bending strength of $SiC_f/SiC$ composites has no effect with the pre-crack size to the critical crack size. $SiC_f/SiC$ composites can not generate large amount of $SiO_2$ oxides to the bottom of crack, and is only generated randomly on surfaces, and can not contribute to the recovery of bending strength.

Analysis of Bending Behavior of Ultra-thin SS304 Stainless Steel Sheets Considering the Surface Effect (표면 효과를 고려한 극박 SS304 스테인리스 강판의 굽힘 거동 분석)

  • Jung, J.;Chae, J.Y.;Chung, Y.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.29 no.6
    • /
    • pp.323-330
    • /
    • 2020
  • The surface region of a sheet metal may have different characteristics from the inner region because the surface region is less restricted than the interior. In addition, the grains on the free surface are less hardened because of surface adsorption of the dislocations, rather than piling up. In the case of bulk or thick sheet metals, this effect is negligible because the fraction of the surface region is much smaller than that of the inner region. However, this surface effect is important in the case of ultra-thin sheet metals. In order to evaluate the surface effect, tensile and bending tests were performed for the SS304 stainless steel with a thickness of 0.39 mm. The bending force predicted using the tensile behavior is higher than the measurement because of the surface effect. To account for the surface effect, the surface layer model was developed by dividing the sheet section into surface and inner layers. The mechanical behaviors of the two regions were calibrated using the tensile and bending properties. The surface layer model reproduced the bending behavior of the ultra-thin sheet metal.

Energy Flow Finite Element Analysis for High Frequency Acoustic and Vibrational Prediction of Complicated Plate Structures Considering Fluid-Structure Interaction (복합평판구조물의 고주파수 대역 유체/구조 연성 소음진동예측을 위한 에너지흐름유한요소해석)

  • Tae-Heum Yoon;Young-Ho Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.1
    • /
    • pp.20-30
    • /
    • 2023
  • In this paper, the Energy Flow Finite Element Analysis (EFFEA) was performed to predict the acoustic and vibrational responses of complicated plate structures considering improved Fluid-Structure Interaction (FSI). For this, a new power transfer relationship was derived at the area junction where two different fluids are in contact on both sides of the plate. In order to increase the reliability of EFFEA of complicated plate structures immersed in a high-density fluid, the corrected flexural wavenumber and group velocity considering fluid-loading effect were derived. As the specific acoustic impedance of the fluid in contact with the plate increases, the flexural wavenumber of the plate increases. As a result, the flexural group velocity is reduced, and the spatial damping effect of the flexural energy density is increased. Additionally, for the EFFEA of arbitary-shaped built-up structures, the energy flow finite element formulation for the acoustic tetrahedral element was newly performed. Finally, for validation of the derived theory and developed software, numerical applications of complicated plate structures submerged in seawater or air were successfully performed.

Surface grinding of WC-Co with high quality (WC-Co의 고품위 평면 연삭가공)

  • Heo, S.J.;Kang, J.H.;Kim, W.I.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.5
    • /
    • pp.42-55
    • /
    • 1994
  • Presently, abrasive processing is on eof several methods for cutting and grinding brittle materials, and high quality in dimensional accuracy and surface roughness are often required as a structural components, therefore most of them has to be ground. In manufacturing of tungsten-carbide components, grinding by diamond wheel is usually adopted in order to provide configurational and dimensional accuracy to the components. The present study proposes the experi- mental research of optimum condition to the high quality surface grinding of the WC-Co material using diamond abrasive wheel in order to minimize the damage on the ground surface and to pursue the precise dimension by conventional grinding machine. Brief investigation is carried out to decrease the dressing is constant, theoretical grinding effect such as machining precision is changed according to the speed of workpiece. Accordingly, normal and tangential grinding forces, which are Fn, Ft were analyzed for the machining processes of WC-Co material to obtain optimum grinding conditions, 3-point bending test is carried out to check machining damage on the ground surface layer, which is one of sintered brittle materials.

  • PDF

A Modification in the Analysis of the Growth Rate of Short Fatigue Cracks in S45C Carbon Steel under Reversed Loading (반복하중조건 하에서의 S45C 탄소강에 대한 미소피로균열 성장속도 해석의 수정)

  • McEvily,A.J.
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.96-105
    • /
    • 1995
  • A modified method for the analysis of short fatigue crack growth has been presented, and calculations based upon the modified method are compared with experimental results for S45C carbon steel. It is also shown that the modified method is in good agreement with experimental data. The proposed equation for the fatigue crack growth rates includes a material constant which relates the threshold level to the endurance limit, a correction for elastic-plastic behaviour and a means for dealing with the effects of crack closure. In this study one of the modifications is to substitute the Forman' s elastic expression of the stress intensity factor range into the geometrical factor The other is a consideration of the bending effect which is developed from the moment caused by the eccentric cross sectional geometry as the crack grows. Thus, this method is useful for residual life prediction of the mechanical structures as well as the welding structures.

  • PDF

Analytical and Experimental Study on the Damping of Vibrating Layered Plates Including the Effects of Shear and Thickness Deformation of the Adhesive Layer (접착제층의 전단과 법선변형 효과를 고려한 적층판의 진동감쇠특성 연구)

  • 김재호;박태학
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1244-1254
    • /
    • 1992
  • This paper investigates the vibrational damping characteristics of laminated plates composed of elastic, viscoelastic and elastic layers by theoretical and experimental methods. Laminated plates are in cylindrical bending and visco-elastic adhesive layer is assumed as the visco-elastic spring which takes damping effect through both shear and normal deformations. Governing equations oof laminated plates are derived in the form of simultaneous first order differential equations, which account for the longitudinal displacements, rotary inertia and shear deformations of elastic base plate and elastic constraining plate. The numerical calculations of the equations are illustrated by the applications to the cantilever beam in transverse vibration. The results of the solutions agree well with the experimental measurements in general. The damping effects due to the shear and thickness deformations in the adhesives are analyzed and it is shown that for thicker adhesives, the damping effect due to thickness deformation becomes significant and for thinner adhesives, due to shear deformation.