DOI QR코드

DOI QR Code

SiCf/SiC 복합재료의 굽힘 강도 특성 및 균열 치유 효과

Bending Strength and Crack Healing of SiCf/SiC Composite Material

  • 안석환 (부경대학교 링크사업단) ;
  • 도재윤 (한국폴리텍대학 부산캠퍼스) ;
  • 문창권 (부경대학교 재료공학과) ;
  • 남기우 (부경대학교 재료공학과)
  • Ahn, Seok-Hwan (Industry-University Cooperation, Pukyong National University) ;
  • Do, Jae-Yoon (Busan Campus of Korea Polytechnic VII) ;
  • Moon, Chang-Kwon (Materials Science and Engineering, Pukyong National University) ;
  • Nam, Ki-Woo (Materials Science and Engineering, Pukyong National University)
  • 투고 : 2013.03.27
  • 심사 : 2013.07.05
  • 발행 : 2013.08.31

초록

Manufactured $SiC_f/SiC$ composites by NITE method was investigated fracture characteristics according to the size of the surface crack. Coated surface crack with a $SiO_2$ colloid in several ways was evaluating the possibility of healing. The strength of CCS and UCS is 313 and 230MPa, respectively and it is about 1/3 of the SPS. Bending strength of $SiC_f/SiC$ composites has no effect with the pre-crack size to the critical crack size. $SiC_f/SiC$ composites can not generate large amount of $SiO_2$ oxides to the bottom of crack, and is only generated randomly on surfaces, and can not contribute to the recovery of bending strength.

키워드

참고문헌

  1. C. B. Charles, 2000, "Advances in fusion technology", Journal of Nuclear Materials, Vol. 283-287, pp. 1-9. https://doi.org/10.1016/S0022-3115(00)00155-0
  2. A. Kohyama, M. Seki, K. Abe, T. Muroga, H. Matsui, S. Jitsukawa and S. Matsuda, 2000, "Interactions between fusion materials R&D and other technologies", Journal of Nuclear Materials, Vol. 283-287, pp. 20-27. https://doi.org/10.1016/S0022-3115(00)00156-2
  3. Y. Katoh, A. Kohyama, T. Nozawa and M. Sato, 2004, "SiC/SiC composites through transient eutectic-phase route for fusion applications", Journal of Nuclear Materials, Vol. 329-333, pp. 587-591. https://doi.org/10.1016/j.jnucmat.2004.04.157
  4. S. K. Lee, W. Ishida, S. Y. Lee, K. W. Nam and K. Ando, 2005, "Crack-Healing Behavior and Resultant Strength Properties of Silicon Carbide Ceramic", Journal of the European Ceramic Society, Vol. 25, pp. 569-576. https://doi.org/10.1016/j.jeurceramsoc.2004.01.021
  5. W. Nakao, S. Mori, J. Nakamura, K. Takahashi, and K. Ando, 2006, "Self-Crack-Healing Behavior of Mullite/SiC Particle/SiC Whisker Multi-Composites and Potential Use for Ceramic Springs" J. Am. Ceram. Soc., Vol. 89, pp. 1352-1357. https://doi.org/10.1111/j.1551-2916.2005.00868.x
  6. Y. Katoh, S. M. Dong and A. Kohyama, A, 2002, "Thermo-mechanical properties and microstructure of silicon carbide composites fabricated by nano-infiltrated transient eutectoid process", Fusion Engineering and Design, Vol. 61-62, pp. 723-731. https://doi.org/10.1016/S0920-3796(02)00180-1
  7. A. Hasegawa, A. Kohyama, R. H. Jones, L. L. Snead, B. Riccardi and P. Fenici, 2000, "Critical issues and current status of SiC/SiC composites for fusion", Journal of Nuclear Materials, Vol. 283-287, pp. 128-137. https://doi.org/10.1016/S0022-3115(00)00374-3
  8. W. Yang, H. Araki, A. Kohyama, H. Suzuki and T. Noda, 2005, "Effects of SiC sub-layer on mechanical properties of Tyranno-SA/SiC composites with multiple interlayers" Ceramics International, Vol. 31, pp. 525-531. https://doi.org/10.1016/j.ceramint.2004.06.018
  9. K. W. Nam and J. S. Kim, 2010, "Critical crack size of healing possibility of SiC ceramics", Materials Science and Engineering A, Vol. 527, pp. 3236-3239. https://doi.org/10.1016/j.msea.2010.02.004