• Title/Summary/Keyword: 굽힘강성

Search Result 222, Processing Time 0.021 seconds

Compression and Bending Test for the Stiffness of Composite Lattice Subelement (복합재 격자 구조의 강성 평가를 위한 Subelement의 압축, 굽힘 시험)

  • Jeon, Min-Hyeok;Kang, Min-Song;Kim, In-Gul;Kim, Mun-Guk;Go, Eun-Su;Lee, Sang-Woo
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.331-337
    • /
    • 2017
  • The composite lattice structures have advantages of high specific stiffness and strength and are mainly applied to the structures of launch vehicles that carry the compressive load. However, since these structures are manufactured by filament winding technology, there are some defects and voids found in the knots. For these reasons, the stiffness and strength of the lattice structures have to be compared with finite element model for predicting design load. But, the full scale test is difficult because time and space are limited and the shape of structure is complex, and hence the simple and reliable test methods for examination of stiffness are needed. In this paper, subelements of composite lattice structures were prepared and compressive and bending test were conducted for examination of stiffness of helical and hoop rib. Test methods for subelements of composite lattice structures that has curved and twisted shape were supposed and compared with finite element analysis results.

Parametric Study on Design of Composite-Foam Sandwich Structures for Micro EDM Machine tool structures (미세 방전가공 기계 구조를 위한 복합재료-포움 샌드위치 구조 설계에 관한 파라메트릭 연구)

  • Kim Dae-Il;Chang Seung-Hwan
    • Composites Research
    • /
    • v.19 no.2
    • /
    • pp.13-19
    • /
    • 2006
  • In this paper, parametric study was carried out to design sandwich structures for EDM machines controlling stacking sequence, stacking thickness of composites and rib configuration. Sandwich structures which are dealt with in this paper are composed of fibre reinforced composite for skin material and foam or resin concrete for core materials. The sandwich column has cruciform rib to enhance bending stiffness of the structure and the bed has several vertical ribs to resist the normal forces and vibration. The design parameters such as rib thickness and stacking sequence were controlled to enhance the system robustness. Finite element analysis was also carried out to verify the variation of static and dynamic stiffness of the structures according to the variation of the parameters. Vibration tests were performed to verify the natural frequencies and damping ratios of the manufactured composite structures. The appropriate shape and configuration conditions for micro-EDM machine structures are proposed.

Parametric Study on the Finite Element Idealization Method for Multi-Spar WIng (다중스파 날개의 유한요소 이상화 방법에 관한 인자연구)

  • Kweon, Jin-Hwe;Kang, Gyong-guk;Park, Chan-Woo;Kim, Seung-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.107-115
    • /
    • 2002
  • A parametric study has been conducted to evaluate the effects of finite element modeling methods on the internal loads, sizing and the weight of the multi-spar aircraft wing structures. The wing is idealized into total 18finite element models and subjected to 4typical external load conditions. An automatic sizing algorithm based on MSC/NASTRAN and MSC/PATRAN is developed. The results show that the critical part affection the internal loads and weight of the structure is wing skin. Effect of modeling of the spar and rib on the structural behavior is not manifest. On the contrast to the general expectation, the models using the bending-resistant elements show the heavier weight than ones by the elements without bending stiffness. From this results, designers of multi-spar wing are recommended to construct the finite element model considering the bending stiffness, or to check the characteristics of the structure before modeling.

Investigation into characteristics of bending stiffness and failure for ISB panel (ISB 판넬의 굽힘강성 및 파단특성에 관한 연구)

  • 안동규;이상훈;김민수;한길영;정창균;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1274-1277
    • /
    • 2004
  • The objective of this research work is to investigate into characteristics of bending stiffness and failure for the ISB ultra-lightweight panel with internally structured material. The expanded metal with a pyramid shape and woven metal are employed as an internally structured material. In order to investigate the characteristics, the specific stiffness and failure map are estimated using the results of three-points bending test. From the results of the experiment, the influence of design parameters of ISB panel on the specific stiffness and failure mode has been found. In addition, it has been shown that ISB panel with expanded metal is prefer to that with woven metal from the view point of optimal design for ISB panel.

  • PDF

The Effect of the Area Ratio and the Distance Ratio on Bending Stiffness of Two Rectangular Plates Spot-Welded (면적비와 거리비가 점용접된 두 사각평판의 굽힘강성에 미치는 영향)

  • Han, Geun-Jo;Ahn, Sung-Chan;Shim, Jae-Joon;Han, Dong-Seop
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.425-430
    • /
    • 2001
  • The mechanical behavior of two rectangular plates spot-welded under bending is investigated in detail. The focus of the analysis is to evaluate the effect of thickness of reinforced plates with equivalent thickness. The results of this investigation are compared from detailed finite element analysis and experiments of the plates spot-welded for various parameters, such as aspect ratio, area ratio, and distance ratio of spot-welding points. The study is carried out using the equivalent thickness of the reinforced plates spot-welded.

  • PDF

The Effect of the Area Ratio and the Distance Ratio on Bending Stiffness of Two Rectangular Spot-Welded Plates (면적비와 거리비가 점용접된 두 사각평판의 굽힘강성에 미치는 영향)

  • Han, Geun-Jo;Ahn, Sung-Chan;Shim, Jae-Joon;Han, Dong-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.387-392
    • /
    • 2003
  • The mechanical behavior of two rectangular spot-welded plates under bending is investigated in detail. The equivalent thickness of spot-welded plates is introduced in this study and used in explaining the results. The focus of the analysis is to evaluate the effect of spot-welding from the view point of equivalent thickness. The investigation of deflection has been performed as comparing the result from finite element analysis with the measured data of the spot-welded plates for various parameters, such as aspect ratio, area ratio, and distance ratio of spot-welding points. The effect of spot-welding is as large as 62%(at r=1.0) when the area ratio of spot-welding point is just 4.52%.

Identification of Flexural Rigidity for Wire Rope Using Immune-Genetic Algorithm (면역-유전알고리즘에 의한 Wire Rope의 굽힘강성도 동정)

  • Choi, B.G.;Yang, B.S.;Kil, B.L.;Lee, S.J.
    • Journal of Power System Engineering
    • /
    • v.2 no.1
    • /
    • pp.52-58
    • /
    • 1998
  • An immune system has powerful abilities such as memory, recognition and learning to respond to invading antigens, and is applied to many engineering algorithm recently. In this paper, the combined optimization algorithm is proposed for multi-objective problem by introducing the capability of the immune system that controls the proliferation of clones to the genetic algorithm. The optimizing ability of the proposed algorithm is identified by using multi-peak function which have many local optimums and identification of the flexural rigidity for wire rope model.

  • PDF

Mechanical Behavior of New Thin Sandwich Panel Subjected to Bending (새로운 박판샌드위치 판재의 삼점굽힘거동)

  • Lee, Jung-In;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.529-535
    • /
    • 2013
  • A new thin sandwich panel composed of an aluminum expanded metal core adhesively jointed with stainless steel face sheets is introduced, and its mechanical behavior under three-point bending is investigated. The strength and stiffness are analyzed theoretically, and the press-formability and strength enhancement are evaluated experimentally. The specimens with the specific configurations exhibit face yielding well before face-core separation, which means that the sandwich panel can be formed by a press without failure. The measured load levels corresponding to the face yielding and the face-core separation agree fairly well with the theoretical estimations. For a given weight, the sandwich panel is superior to a solid panel in terms of strength, stiffness, and press-formability.

Numerical Investigation of Surface Deformations in Resin Coated Quasi-Isotropic Laminates due to Thermal Variance (수지를 코팅한 준등방성 적층판에 대한 열변형 수치해석)

  • Kim, Kyung-Pyo
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.4
    • /
    • pp.207-215
    • /
    • 2014
  • In this paper the radial stiffness associated with stacking sequence effects, and the dimensional stability issue associated with thermally induced surface deformation in quasi-isotropic laminates due to the effect of stacking sequence and additional resin layer technique, are numerically investigated. Finally, the influence of surface resin layer techniques for fiber print-through mitigation in a composite mirror is tested for evaluation of surface accuracy across varying thermal conditions.

Deformation and Fracture Analysis of Honeycomb Sandwich Composites under Bending Loading (굽힘 하중을 받는 하니컴 샌드위치 복합재료의 변형 및 파괴 해석)

  • Kim Hyoung-Gu;Choi Nak-Sam
    • Composites Research
    • /
    • v.18 no.1
    • /
    • pp.30-37
    • /
    • 2005
  • The bending strength characteristics and local deformation behaviors of honeycomb sandwich composites were investigated using three-point bending experiment and finite element simulation with a real model of honeycomb core. Two kinds of cell sizes of honeycomb core, two kinds of skin layer thicknesses, perfect bonding specimen as well as initial delamination specimen were used for analysis of stress and deformation behaviors of honeycomb sandwich beams. Various failure modes such as skin layer yielding, interfacial delamination, core shear deformation and local buckling were considered. Its simulation results were very comparable to the experimental ones. Consequently, cell size of honeycomb core and skin layer thickness had dominant effects on the bending strength and deformation behaviors of honeycomb sandwich composites. Specimens of large core cell size and thin skin layer showed that bending strength decreased by $30\~68\%$.