• Title/Summary/Keyword: 굴착성

Search Result 1,051, Processing Time 0.023 seconds

Safety Evaluation of Subway Tunnel Structures According to Adjacent Excavation (인접굴착공사에 따른 지하철 터널 구조물 안전성 평가)

  • Jung-Youl Choi;Dae-Hui Ahn;Jee-Seung Chung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.559-563
    • /
    • 2024
  • Currently, in Korea, large-scale, deep excavations are being carried out adjacent to structures due to overcrowding in urban areas. for adjacent excavations in urban areas, it is very important to ensure the safety of earth retaining structures and underground structures. accordingly, an automated measurement system is being introduced to manage the safety of subway tunnel structures. however, the utilization of automated measurement system results is very low. existing evaluation techniques rely only on the maximum value of measured data, which can overestimate abnormal behavior. accordingly, in this study, a vast amount of automated measurement data was analyzed using the Gaussian probability density function, a technique that can quantitatively evaluate. highly reliable results were derived by applying probabilistic statistical analysis methods to a vast amount of data. therefore, in this study, the safety evaluation of subway tunnel structures due to adjacent excavation work was performed using a technique that can process a large amount of data.

A Study on the Prediction Method of Ground Displacement by Deep Excavation (깊은굴착에 의한 지반변위의 예측방법에 관한 연구)

  • 안종필;박경호
    • The Journal of Engineering Geology
    • /
    • v.12 no.1
    • /
    • pp.1-21
    • /
    • 2002
  • Recently, the rapid industrialization and urbanization of the country due to a high economic growth, require optimization, usage and the expansion of underground space. Therefore the consturction of large and deep basements takes place in braced excavated area where their earth retaining structures cause many problems such as settlement and damages of nearby buildings and underground utilities. this study deals with the influence distance of settlement and the amount for settlement based on the measurement which were obtained at five excavation construction sites. Maximum ground surface settlement, (0.28∼0.3)(%)H utilizing depth, is similar to the measurement and the value by Clough's method. It was found that the settlement and the influence distance of settlement calculated by Clough's method were rational.

A Study on the Characteristics of Blasting Vibration from Different Excavation Methods in Underground Mine (지하채굴공동에서 굴착방법에 따른 발파진동의 특성에 관한 연구)

  • Kang Choo-Won;Ryu Pog-Hyun
    • Explosives and Blasting
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • Recently, most of limestone quarries have been not mined by open-pit mining but by underground excavation to reduce environmental pollution. As a result, the size of underground galleries became bigger to maintain mass-production close to open-pit mining. However, the scale of pillars and galleries as well as the excavation methods may induce a few adverse problems for the stability of a mined gallery. In this study, the nomogram analysis and the prediction of rock damage zone induced by blasting were carried out. The testing conditions include concurrent blasting of two adjacent galleries, concurrent blasting of a transport drift and a inclined shaft, sequential blasting of two galleries, and separate blasting for each gallery. For each testing condition, blast vibration velocity was measured and analyzed. From the prediction formulas for blast vibration velocity derived in this study, the maximum depth of rock damage zone induced by blasting were also predicted.

A Case Study of Electronic-blasting, Railroad Tunnel to Pass under Existing Highway (기존 고속도로 하부 통과를 위한 철도터널 전자발파 시공사례)

  • Kim, Gab-Soo;Son, Young-Bok;Kim, Jae-Hoon
    • Explosives and Blasting
    • /
    • v.32 no.2
    • /
    • pp.16-24
    • /
    • 2014
  • In this "Wonju~Jaecheon double-lanes railroad" project, a highway is located at about 13meter above a tunnel. Initially, rock-splitting method was used for the tunnel excavation in order to minimize the possible damage on the highway. The method, however, takes a long time for the tunnel excavation and that may cause other problems like large displacement of tunnel and subsidence of highway ground before the tunnel can be stabilized by supporters. Therefore, the application of electronic blasting method(eDdevII) was recommended to control the blast vibration below 1.0cm/sec as well as to prevent the subsidence of highway ground. The analysis of the influence of tunnel excavation on the highway showed that electric blasting method is permissible for the safe management of the highway. Based on that, the tunnel construction under a highway could be carried out quickly and safely without any damages on the highway.

An Experimental Investigation for the Effects of Pre-loading on the Ground Movement in Sand (선행하중 적용시 흙막이 벽체 및 주변지반의 거동에 관한 굴착모형실험)

  • 이봉열;김학문
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.15-26
    • /
    • 2003
  • Urban excavation requires highly reliable prediction technique for the design and construction of earth retaining structure in order to protect adjacent structures around deep excavation. Application of the pre-loading of bracing for deep excavation has been reported, and the known beneficial effects are not fully understood and recognized by many practitioners. Model tests have been carried out to evaluate the efficiency of pre-loading system in reducing ground settlement as well as prediction of structural damage around excavation in sand. The test results revealed that the applied pre-loading of 50% and 70% showed about 20% of reduction in horizontal wall displacement and 30∼40% reduction in ground settlement. Also, bracing forces and earth pressure distribution behind the wall have been monitored during pre-loading at various excavation stages.

A Case Study of Soil-Cement Fill for Tunneling (소일시멘트 복토후 터널굴착에 대한 사례 연구)

  • Shin Il-Jae;Kang Jun-Ho;Suh Young-Ho
    • Tunnel and Underground Space
    • /
    • v.15 no.5 s.58
    • /
    • pp.359-368
    • /
    • 2005
  • In case the overburden of a tunnel is too low to adopt NATM, cut and cover method generally can be chosen as alternative. However, in tunneling some area with very low or no overburden between two mountains, the cut and cover method requires additional construction of a couple of tunnel portals and the maintenance of portal slopes until backfilling is completed. As a solution for this problem, increasing the tunnel overburden by raising the ground level can be effective. This paper presents the case study for tunneling at C240 site in Taiwan High Speed Railway(THSR) in which soil-cement filling method was used for pre-banking before tunnel excavation. Cement content of filling material was $2\~4\%$ and thickness of filling a round was $130\~250\;mm$. The stability evaluation for the soil-cement slope and concrete lining of low cover tunnel was conducted by numerical analysis.

Extracting the Risk Factor of Ground Excavation Construction and Confidence Analysis using Statistical Test Procedure (지반굴착공사 위험요소 도출 및 통계적 검정 방법을 통한 신뢰성 분석)

  • Kim, Dong-Min;Kim, Woo-Seok;Baek, Yong
    • Journal of Korean Society of Disaster and Security
    • /
    • v.10 no.1
    • /
    • pp.11-17
    • /
    • 2017
  • The case study on ground subsidence was conducted and the cause of ground subsidence was evaluated, main cause were insufficient site exploration, inaccurate strength parameters, defective temporary wall, insufficient reaction for boiling and heaving, excessive excavation and so on. Risk factors during excavation were identified from the cause of ground subsidence and risk factors were site exploration, selecting excavation method, structure analysis, measurement plan, excavation method construction, underground water level change, natural disaster and construction management. The survey of the experts on risk factors identified was conducted to evaluate the importance of risk factors, and confidence analysis was performed to evaluate the significance level between survey result and survey respondent using Chi-square Test.

Improvement of Tunnelling Speed in Full-Face Mechanical Excavation (기계굴착에서 굴착속도의 발전경향분석)

  • Park, Chul-Whan;Park, Chan;Cheon, Dae-Sung;Synn, Joong-Ho
    • Tunnel and Underground Space
    • /
    • v.17 no.3 s.68
    • /
    • pp.225-233
    • /
    • 2007
  • Because of Norwegian topography as valleys and fjords, a large number of tunnels has been built and 59 of them have been excavated by TBM for last 30 years. Prognosis technology has been developed and improved through lots of TBM experiences, and the NTNU prediction model has been completed. This paper focuses the improvement of net penetration rate and advance rate in 14 Norwegian and 4 Koran TBM tunnelling sites of which data were reported. Through this period, net penetration rate as well as advance rate were increased to double with the improvement of disc cutter size and cutter arrangement in Norway. These rates in Korea were also increased for 15 years even though the rates were lower compared to Norwegian. It is estimated that these low rates were mainly caused by using disc cutters less than 17 inch diameter. It is expected that net penetration rate and advance rate can be increased by improvement of machine and tunnelling technology, especially by using 17 or 19 inch of the disc cutter size in the Korean full face mechanical tunnelling site.

A Case Study of Deep Shaft Blasting for Reducing Ground Vibration in Urban Area (도심지의 대심도 수직구 발파에서 지반진동저감 시공 사례)

  • Hwang, Nam-Sun;Kim, Kyung-Hyun;Kim, Jeoung-Hwan;Jung, Min-Sung;Lee, Hyeung-Jin;Na, Gyeong-Min
    • Explosives and Blasting
    • /
    • v.39 no.2
    • /
    • pp.15-26
    • /
    • 2021
  • Domestic electronic detonators are used widely in many quarry and construction sites since its launch at 2013. In the case of SOC projects conducted in the city, most of them are designed in high-depth to reduce complaints. The high-depth excavation needs a long construction period and huge cost for building shaft and ventilation hole. Mechanical excavation method is applied when safety things are located nearby the site. Solidity of rock and machine's performance affect on the method's efficiency. So as the efficiency is getting lower, the construction period is extended, and the cost is increases as well. This case study is about changing the machine excavation method to the blasting method which is electronic detonator applied at the shaft construction site in the city. This is an example of using electronic detonators on the construction site in reducing blast-noise and vibration while meeting environmental regulatory standards.

Experience of the Application of a Rock Cracking Method Using Steam Pressure to Tunnel Excavation (증기압을 이용한 파암공법의 현장 적용성 연구)

  • Kim, Duk-young;Kim, Sun-Woong
    • Explosives and Blasting
    • /
    • v.35 no.2
    • /
    • pp.1-8
    • /
    • 2017
  • In this study, the characteristics of a new rock cracking method using steam pressure are briefly presented. The rock cracking method was originally developed as a means to decrease the ground vibrations from underground rock excavations. The validation tests were also conducted by applying the method to an actual rock tunnel under construction. The ground vibrations were measured in the vicinity of the test site. The measured vibration results were compared with the values predicted by an attenuation equation, which had been proposed by a company in Japan. Also, a simple cost assessment for the method was conducted to demonstrate its cost effectiveness in underground tunnel excavations.