• Title/Summary/Keyword: 굴절파

Search Result 319, Processing Time 0.025 seconds

연속 굴절파 중합 방식을 활용한 충적층 지하수위 조사기법 소개 및 현장 응용

  • 김형수;김중열;김유성
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.83-87
    • /
    • 2004
  • 본 연구는 고해상도의 충적층 지하수위 분포 조사를 위한 탄성파 굴절법 조사 방법을 소개하고 부여 군수리 충적층 일대에서 이 기법을 통해, 획득된 실제 충적층내의 지하수위 조사 결과를 제시한다. 기본적으로 본 연구에서 활용된 연속 굴절파 중합 방식은 동일 공심점(common mid point, 이후 CMP)을 갖는 굴절파 신호를 취합하고, 이격 거리(offset)에 대한 시간 지연 효과 보정을 수행한 후, 이들 신호를 중합하여, 충적층의 지하수위면에서 굴절된 신호를 보다 뚜렷이 부각시켜 정확한 지하수위 정보를 획득 하는 방식으로 일명 CMP 굴절법이라고도 한다. 이 방식은 독일에서 최초 개발되었으나(Gebrande, 1986; Orlowsky 등, 1998), 국내에서 적용되기는 본 연구가 최초이다. 이러한 탄성파의 굴절 신호를 사용하는 방식은 우선, 기존의 일반적인 고해상도 반사법 탐사에서 잡음으로 여겨졌던 굴절파 신호를 활용할 수 있으며, 고해상도 반사법 탐사와 동일한 배열과 운영 방식으로 획득된 자료에서 원하는 정보를 획득할 수 있으므로, 고해상도 반사법에 의한 기반암 조사와 함께 적용될 경우, 정화한 충적 대수층의 분포를 조사할 수 있게 하여주는 획기적인 조사 신기술이다. 개발된 기법은 부여 군수리 충적층 지역을 대상으로 적용되었으며, 그 결과 기존의 어떠한 지구물리 조사 방법보다 정확하고 분명한 지하수위 분포를 보여주었다.

  • PDF

Static Correction of Land 3D Seismic Data (육상 3차원 탄성파 자료의 정보정)

  • Sheen Dong-Hoon;Park Jae-Woo;Ji Jun;Lee Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.3
    • /
    • pp.145-149
    • /
    • 2002
  • The static correction, which is classified into refraction based static correction and reflection based residual static correction, removes distortions caused by irregularities of thickness or velocity in near-surface. Generally, refraction statics is a time consuming process because of high dependence on the interpreter's analysis. Therefore, for huge 3D seismic data, automatic static correction which minimizes the interpreter's analysis is required. In this research, we introduce an efficient method of refraction static correction for land 3D seismic survey.

Case study on the lake-land combined seismic survey for underground LPG storage construction (LPG 지하저장기지 건설을 위한 수륙혼합 탄성파탐사 사례)

  • Cha Seong-Soo;Park Keun-Pil;Lee Ho-Young;Lee Hee-Il;Kim Ho-Young
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2002.09a
    • /
    • pp.101-125
    • /
    • 2002
  • A lake seismic survey was carried out to investigate possible geohazards for construction of the underground LPG storage at Namyang Lake. The proposed survey site has a land-lake combined geography and furthermore water depth of the lake is shallow. Therefore, various seismic methods such as marine single channel high resolution seismic reflection survey, sonobuoy refraction survey, land refraction survey and land-lake combined refraction survey were applied. Total survey amounts are 34 line-km of high resolution lake seismic survey, 14 lines of sonobuoy refraction survey, 890 m of land refraction survey and 8 lines of land-lake combined refraction survey. During the reflection survey, there were severe water reverberations from the lake bottom obscured subsurface profiling. These strong multiple events appeared in most of the survey area except the northern and southern area near the embankment where seems to be accumulated mainly mud dominated depositions. The sonobuoy refraction profiles also showed the same Phenomena as those of reflection survey. Meanwhile the results of the land-lake combined refraction survey showed relatively better qualities. However, the land refraction survey did not so due to low velocity soil layer and electrical noise. Summarized results from the lake seismic survey are that acoustic basement with relatively flat pattern appeared 30m below water level and showed three types of bedrock such as fresh, moderately weathered and weathered type. According to the results of the combined refraction survey, a velocity distribution pattern of the lake bottom shows three types of seismic velocity zone such as >4.5 km/s, 4.5-4.0km/s and <4.0km/s. The major fault lineament in the area showed NW-SE trend which was different from the Landsat image interpretation. A drilling was confirmed estimated faults by seismic survey.

  • PDF

Seismic Refraction Analysis to Estimate the Depth to the Bedrock: Case Study (기반암 깊이 도출을 위한 굴절법 탄성파 자료 분석: 사례연구)

  • Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.4
    • /
    • pp.237-242
    • /
    • 2005
  • A seismic refraction study in estimation of depth to the bedrock demonstrates that 1) the average velocity in the medium is about 250 m/s in the surface layer (< 4 m), 2,500 m/s in the weathered formation, and greater than 3,000 m/s in the bedrock, 2) the depth to the deepest reflector assumed to be the bedrock is about 17 m; however, according to the cores collected in a borehole in study area, the bedrock (granite) occurred at depth 25 m, 3) according to the density and velocity logging, at depth 17 m, a measurable velocity and density increase are observed, and 4) the velocity of the weathered formation is relatively high and therefore, the acquisition offsets ($70{\sim}80m$) are turned out not to be long enough to record the refracted signal from the bedrock at depth 25 m as first arrivals.

공주 공산성 원형연못의 지반에 대한 탄성파 굴절법 탐사

  • 변성환;오진용;서만철
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.132-138
    • /
    • 2004
  • 탄성파 탐사는 인공지진파를 이용하여 지표면 하부의 물성을 알아내는 지구물리탐사로서 20 세기 초부터 석유탐사와 공학적 지반조사에 가장 널리 사용되었다. 굴절법 탄성파 탐사는 지층의 탄성파 속도를 알아내는 방법으로서 최근에는 석조문화재 등의 지반특성 조사에서 사용된 예가 있다. 이번 연구에서는 공주 공산성의 쌍수정 광장에 위치하는 공산성 원형연못 주변의 지반에 대하여 굴절법 탐사를 실시하였다. 쌍수정 광장은 기존의 발굴조사를 통하여 백제 추정왕궁지가 위치한 곳으로 알려졌으며, 광장 남쪽에 원형연못(상면직경 7.3 m, 바닥직경 4.78 m, 높이 3 m)도 발굴되었다. 원형연못 주변에 5개 탄성파 측선을 설치하였고, 해머 타격점과 수신기의 배열을 3가지 다른 방식을 적용하여 24 m, 31 m, 48 m 측선깊이의 굴절법 자료를 얻었다. 대체로 공산성 원형연못 주변의 지반은 3개 층으로 구성되어 있다. 각 층의 겉보기 속도는 약 261${\~}$391 m/s, 약 591${\~}$992 m/s, 약 1950${\~}$3230 m/s이며, 첫 번째와 두 번째 층의 두께는 각각 약 2${\~}$2.4 m 와 4.6${\~}$8.6 m이다. 일반적으로 최하부 층의 속도는 기반암, 상부층들의 속도는 풍화토에 대응한다. 그러나 두 번째 층의 주시곡선 형태와 속도범위는 국내 석탑 문화재 하부의 것과 유사한 것으로 보아 공산성 연못주변은 인공적인 기초지반의 가능성을 제기하며, 그렇다면 공산성 원형연못은 파내려 간 것보다는 쌓아 올렸을 것이다.

  • PDF

Identification of high-dip faults utilizing the GRM technique of seismic refraction method(Ⅱ) -Application to real data- (굴절파 GRM 해석방법을 응용한 고경사 단층 인지 (Ⅱ) -실제 자료 적용-)

  • Kim, Gi Yeong;U, Nam Cheol
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.1
    • /
    • pp.65-74
    • /
    • 1999
  • From refraction data along four seismic profiles near Eonyang which the Yangsan fault passes through, the Slope Variation Indicators (SVI) are computed and interpreted in terms of fault distribution. The average velocities of 2,250-2,870 m/s are estimated using velocity-analysis functions for the target boundary along those profiles. The average velocity for Line 1 is approximately 600 m/s lower than ones for the other lines. The SVI's with amplitude greater than or equal to 0.5 ms/m are turned out to be located near faults shown on the high-resolution reflection section, as closely as one station spacing (3 m). Large amplitude SVI's are densely distributed near National Road 35, and the fault having the largest vertical slip is indicated to be located approximately 930 m west of the inferred fault on the published geologic map.

  • PDF

Image Enhancement of the Weathered Zone and Bedrock Surface with a Radial Transform in Engineering Seismic Data (엔지니어링 탄성파자료에서 방사변환을 통한 풍화대 및 기반암 표면의 영상강화)

  • Kim, Ji-Soo;Jeon, Su-In;Lee, Sun-Joong
    • The Journal of Engineering Geology
    • /
    • v.22 no.4
    • /
    • pp.459-466
    • /
    • 2012
  • A difficulty encountered in engineering seismic mapping is that reflection events from shallow discontinuities are commonly overlapped with coherent noise such as air wave, direct waves, head waves, and high-amplitude surface waves. Here, the radial trace transform, a simple geometric re-mapping of a trace gather (x-t domain) to another trace gather (v-t domain), is applied to investigate the rejection effect of coherent linear noises. Two different types of data sets were selected as a representative database: good-quality data for intermediate sounding (hundreds of meters) in a sedimentary basin and very noisy data for shallow (${\leq}50m$) mapping of the weathered zone and bedrock surface. Results obtained with cascaded application of the radial transform and low-cut filtering proved to be as good as, or better than, those produced using f-k filtering, and were especially effective for air wave and direct wave. This simple transform enables better understanding of the characteristics of various types of noise in the RT domain, and can be generally applied to overcoming diffractions and back-scatterings caused by joints, fractures, and faults commonly that are encountered in geotechnical problems.

Analysis of Harmonic Wave Generation in Nonlinear Oblique Crack Surface (비선형 경사 균열면에서의 고조파 발생 특성 해석)

  • Kim, Noh-Yu;Yang, Seung-Yong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.4
    • /
    • pp.376-387
    • /
    • 2012
  • Based on the nonlinear spring model coupled with perturbation method, 2nd harmonic waves generated by oblique incident ultrasound on nonlinear crack interface were calculated and investigated. Reflected and transmitted waves from the interface were determined and analyzed at various angle of incidence for the cracks with different interfacial stiffness in order to estimate the 2nd harmonic generation of incident ultrasound. It was shown in computer simulation that the 2nd harmonic components changed much with the increase of incidence angle in both reflected and transmitted wave, but became very small when the incident angle approached toward 90 degree. It can be concluded that the 2nd harmonic component of reflected wave has a meaningful amplitude as much as the transmitted 2nd harmonic wave from partly closed crack.

Seismic Studies on Velocity Anisotropy in the Ulsan Fault Zone (울산단층대에서의 굴절파 속도이방성 연구)

  • Lee, Kwang-Ja;Kim, Ki-Young;Kim, Woo-Hyuk;Im, Chang-Bock
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.1
    • /
    • pp.49-56
    • /
    • 2000
  • As a part of geophysical studies on segmentation of the Ulsan fault, walkaway refraction seismic data were measured at 17 stations near National Road 7 between Kyungju and Ulsan. Seismic anisotropy was analyzed in the offset range of 1-48 m. The average refraction velocity of 1787 m/s indicates the refractor is the upper boundary of weathered basement. P-wave anisotropy is computed to be 0.056 in average, which may serve as a weak evidence that the strike of major geologic structure coincide with the inferred fault direction. In the south of the province boundary between Kyungsangnam-do and Kyungsangbuk-do, the velocity anisotropy is normal in that P-wave velocity in the strike direction is faster than the one measured in the dip direction. On the contrary, it appears that the fault strikes in many directions or that fractures may be developed better in the dip direction in the northern par. Such a difference in anisotropic pattern is believed to be a seismic evidence indicating that a segmentation boundary of the Ulsan fault locates near the province boundary.

  • PDF