Ha, Hyunsoo;Woo, Seungmin;Yim, Junyeob;Hwang, Byung-Yeon
Proceedings of the Korea Information Processing Society Conference
/
2015.04a
/
pp.680-682
/
2015
최근 스마트폰의 보급으로 소셜 네트워크 서비스를 이용하는 사용자들이 급증하였다. 그 중 트위터는 정보의 빠른 전파력과 확산성으로 인해 현실에서 발생한 이벤트를 탐지하는 도구로 활용하는 것이 가능하다. 따라서 트위터 사용자 개개인을 하나의 센서로 가정하고 그들이 작성한 트윗 텍스트를 분석한다면 이벤트 탐지의 도구로써 활용할 수 있다. 이와 관련된 연구들은 이벤트 발생 위치를 추적하기 위해 GPS좌표를 이용하지만 트위터 사용자들이 위치정보 공개에 회의적인 점을 감안하면 명확한 한계점으로 제시될 수 있다. 이에 본 논문에서는 트위터에서 제공하는 위치정보를 이용하지 않고, 트윗 텍스트에서 위치정보를 추적하는 방법을 제시하였다. 트윗 텍스트에서 키워드간의 관계를 고려하여 이벤트의 사실여부를 결정하였으며, 실험을 통해 기존 매체들보다 빠른 탐지를 보임으로써 제안된 시스템의 필요성을 보였다.
Jang, Won Jin;Lee, Yong Gwan;Kim, Se Hoon;Kim, Yong Won;Kim, Seong Joon
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.113-113
/
2018
본 연구는 다목적 입자군집최적화(Particle Swarm Optimization, PSO) 알고리즘을 SWAT(Soil and Water Assessment Tool) 모형에 적용하여 자동보정 알고리즘의 적용 가능성을 평가하고자 한다. PSO 알고리즘은 Python을 활용해 다목적 함수를 고려할 수 있도록 새롭게 개발되었다. SWAT 모형의 유출 해석은 안성천의 공도 수위 관측소 상류유역($366.5km^2$)을 대상으로 하였으며, 공도 지점의 2000년부터 2017년까지의 일 유량 자료를 이용하여 검보정하였다. 모형을 위한 기상자료는 공도유역 주변 3개 기상관측소(수원, 천안, 이천)의 일별 강수량, 최고 및 최저기온, 평균 풍속, 상대습도 및 일사량을 구축하였다. SWAT 모형의 유출 해석은 결정계수(Coefficient of determination, $R^2$), RMSE(Root mean square error), Nash-Sutcliffe 모형효율계수(NSE) 및 IOA(index of agreement) 등을 활용하여, 기존 연구 결과와 PSO 알고리즘을 활용한 결과를 비교 분석하고자 한다. 본 연구에서 개발한 다목적 PSO 알고리즘을 활용한 SWAT모형의 유출 해석은 보다 높은 정확도를 얻을 수 있을 것으로 예상되며, Python으로 개발되어 SWAT모형 이외에도 널리 적용될 수 있을 것으로 판단된다.
Latent Class model has been considered recently by many researchers and practitioners as a tool for identifying heterogeneous segments or groups in a population, and grouping objects into the segments. In this paper we consider data on prostate cancer patients from Korean National Cancer Institute and propose a method for grouping prostate cancer patients by using latent class Poisson model. A Bayesian approach equipped with a Markov chain Monte Carlo method is used to overcome the limit of classical likelihood approaches. Advantages of the proposed Bayesian method are easy estimation of parameters with their standard errors, segmentation of objects into groups, and provision of uncertainty measures for the segmentation. In addition, we provide a method to determine an appropriate number of segments for the given data so that the method automatically chooses the number of segments and partitions objects into heterogeneous segments.
For effective water quality management, it is necessary to secure reliable water quality information. There are many variables that need to be included in a comprehensive practical monitoring network : representative sampling locations, suitable sampling frequencies, water quality variable selection, and budgetary and logistical constraints are examples, especially sampling location is considered to be the most important issues. Until now, monitoring network design for water quality management was set according to the qualitative judgments, which is a problem of representativeness. In this paper, we propose network design system for optimal water quality monitoring using the scientific statistical techniques. Network design system is made based on the SAS program of version 9.2 and configured with simple input system and user friendly outputs considering the convenience of users. It applies to Excel data format for ease to use and all data of sampling location is distinguished to sheet base. In this system, time plots, dendrogram, and scatter plots are shown as follows: Time plots of water quality variables are graphed for identifying variables to classify sampling locations significantly. Similarities of sampling locations are calculated using euclidean distances of principal component variables and dimension coordinate of multidimensional scaling method are calculated and dendrogram by clustering analysis is represented and used for users to choose an appropriate number of clusters. Scatter plots of principle component variables are shown for clustering information with sampling locations and representative location.
Journal of the military operations research society of Korea
/
v.33
no.2
/
pp.101-113
/
2007
The period of military personnel service will be phased down by 2014 according to 'The law of National Defense Reformation' issued by the Ministry of National Defense. For this reason, the ROK army provides discrimination education to 'newly recruited privates' for more effective individual performance in the on-the-job training. For the training to be more effective, it would be essential to predict the degree of achievements by new privates in the training. Thus, we used data mining techniques to develop a classification model which classifies the new privates into one of two achievements groups, so that different skills of education are applied to each group. The target variable for this model is a binary variable, whose value can be either 'a group of general control' or 'a group of special control'. We developed four pure classification models using Neural Network, Decision Tree, Support Vector Machine and Naive Bayesian. We also built four hybrid models, each of which combines k-means clustering algorithm with one of these four mining technique. Experimental results demonstrated that the highest performance model was the hybrid model of k-means and Neural Network. We expect that various military education programs could be supported by these classification models for better educational performance.
The principal objective of this study was to analyze 16S rDNA-ARDRA of the humus forest soil via an improved manual method and an ISOIL kit on the basis of the UPGMA clustering of the 16S rDNA combined profile, 44 ARDRA clusters of 76 clones via the ISOIL kit method and 45 ARDRA clusters of 136 clones via the improved manual method. On the basis of the 16S rDNA sequences, 44 clones from the ARDRA clusters by the ISOIL kit were classified into 3 phyla : ${\alpha}-,\;{\beta}-,\;{\gamma}-,\;{\delta}-Proteobacteria$, Acidobacteria and Actinobacteria. Using the improved manual method, the specimens were classified into 6 phyla : the ${\alpha}-,\;{\beta}-,\;{\gamma}-,\;{\delta}-Proteobacteria$, Acidobacteria, Bacteroides, Verrucomicrobia, Planctomycetes and Gemmatomonadetes. As a result, the modified manual method indicated greater phylogenetic diversity than was detected by the ISOIL kit. Approximately 40 percent of the total clones were identified as ${\alpha}-Proteobacteria$ and 30 percent of the total clones were ${\gamma}-Proteobacteria$ and assigned to dominant phylogenetic groups using the ISOIL kit. Using the modified manual method, 41 percent of the total clones were identified as Acidobacteria and 28 percent of total clones were identified as ${\alpha}-proteobacteria$ and assigned to dominant phylogenetic groups.
This paper describes an intelligent real-time monitoring system of a semiconductor processing equipment, which determines normal or not for a wafer in processing, using multiple time-series pattern recognition. The proposed system consists of three phases, initialization, learning and real-time prediction. The initialization phase sets the weights and tile effective steps for all parameters of a monitoring equipment. The learning phase clusters time series patterns, which are producted and fathered for processing wafers by the equipment, using LBG algorithm. Each pattern has an ACI which is measured by a tester at the end of a process The real-time prediction phase corresponds a time series entered by real-time with the clustered patterns using Dynamic Time Warping, and finds the best matched pattern. Then it calculates a predicted ACI from a combination of the ACI, the difference and the weights. Finally it determines Spec in or out for the wafer. The proposed system is tested on the data acquired from etching device. The results show that the error between the estimated ACI and the actual measurement ACI is remarkably reduced according to the number of learning increases.
Based on Muan-gun, Jeollanam-do, this study explores how to mitigate the disappearance of rual areas. The study surveyed 95 young farmers in Muan-gun to assess their farming practices and the challenges they face. We further employ factor analysis and cluster analysis classify young farmers in Muan-gun, facilitating the identification of tailored policies or initiatives aimed at fostering and supporting young farmers. The results are summarized as follows. First, Muan County does not have any ordinances or original projects specifically designed to support young farmers. Second, the succession rate of farmland among young farmers in Muan County is 41.1%, which is comparable to the national rate of 43.7%. This indicates that approximately 40% of young farmers in Korea have inherited farmland, a critical foundation for agricultural activities. Third, despite accumulating farming experience, young farmers have not seen any improvement in local living conditions, and rather their difficulties have intensified. Fourth, this study conducted a factor analysis using 21 variables, resulting in the selection of seven common factors for cluster analysis. Consequently, young farmers in Muan County were categorized into three groups. The multinomial logit analysis revealed that the typology of young farmers is influenced by indicators such as cultivated area, farming experience, demand for smart farms, farm income, and farming type (rice cultivation or other). Therefore, to attract young farmers and prevent the decline of rural areas, policy efforts should focus on minimizing entry barriers to farming infrastructure, such as access to farmland, and improving local settlement conditions.
Park, Kuk-Kwon;Kwon, Ho-Jun;Choi, Eunju;Ryoo, Chang-Kyung
Journal of Advanced Navigation Technology
/
v.21
no.5
/
pp.443-449
/
2017
Swarm of low-cost UAVs for search mission has benefit in the sense of rapid search compared to use of single high-end UAV. As the number of UAVs forming swarm increases, not only the time for the mission planning increases, but also the system to operate UAVs has excessive burden. This paper addresses a decentralized area search algorithm adequate for multiple UAVs which takes advantages of flexibility, robustness, and simplicity. To down the cost, it is assumed that each UAV has limited ability: close-communication, basic calculation, and limited memory. In close-communication, heath conditions and search information are shared. And collision avoidance and consensus of next search direction are then done. To increase weight on un-searched area and to provide overlapped search, the score function is introduced. Performance and operational characteristics of the proposed search algorithm and mission planning logic are verified via numerical simulations.
Korean Journal of Construction Engineering and Management
/
v.6
no.2
s.24
/
pp.102-110
/
2005
After the IMF bailout, the Environment of Domestic Construction Industry had changed dramatically. Before the IMF, Domestic Construction Firms are secured by the government regulations and some traditional practices. However, due to the following reasons: a decrease in public works, an increase in uncertainty of market prediction, the change of bid system, and increase in construction firms, recently the competition among construction firms has became keen. Under the serious competition, in order that medium-size construction firms survive in the construction market, it is need to establish the strategy that could increase productivity. In order to establish the strategy, firstly, construction firms should set up an appraisal standard of construction firms. Consequently, This study will introduce companies' objective appraisal in domestic construction market as well as basal data for setting-up strategy through adaptation industry structure analysis of business administration for strategic group analysis and a company which has lagged behind competitive power among the competitive companies can choose a target strategic group which should be pursued it in the future through being classified according to a group taken analogical strategy.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.