• Title/Summary/Keyword: 국토계수

Search Result 131, Processing Time 0.031 seconds

Comparative Study of Cost Estimate System in Landscape Architectural Construction - Comparison of Unit Price between Actual Construction Cost and Standard Quantity per Unit - (조경공사 적산방식의 비교연구 - 실적공사비와 표준품셈의 단가비교 -)

  • Jung, Un-Soo;Choi, Key-Soo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.2
    • /
    • pp.97-111
    • /
    • 2012
  • This study aims to find a proper construction cost calculation method by comparing unit prices of cost estimate in landscape construction among other public ordering construction projects. There were 7 out of 12 items from the actual work cost in the first half of 2011 were compared. The 12 items were classified as landscape Architectural construction and the 7 items were the approximate standard. As applied construction types, the comparable 35 items out of the 80 actual work cost items applied to 5 sites were compared to the unit price of the standard quantity per unit in March 2011, which was the approximate standard. Actual construction rate of the 7 items in the category of landscape sector was 104.86% for each item and 92.09% as a total construction cost. The high actual construction rate was caused by the high rate of seed spray depending on the status of applying rocks. However, there were more fundamental reasons for the cost generated from aslope treatment for grass and seed spray. So, it requires more detailed regulations on the modification factors for each soil type, the standard and needs to improve theillogical standard quantity per unit system. Actual construction rate of the 35 items in the applied sectors of civil engineering and architecture was 78.65% for each item and 71.31% (70.17%) as a total construction cost. This shows that actual unit cost cannot reflect actual cost structurally and standard quantity per unit system lacks practicality in terms of construction due to thelabor force. 85.1~91.2 % actual construction rate announced by the Ministry of Land and Maritime Affairs referred to the newly switched items. So the result was estimated as actual construction rate. This requires supplementation after verification in order to make the actual work cost produce at a proper rate. Also, standard quantity per unit system needs complementation with these actual data and so on.

Development of real-time program correcting error in radar polarimetric variables (실시간 레이더 편파변수 오차 보정 프로그램 개발)

  • Yoon, Jungsoo;Hwang, Seok-Hwan;Kang, Narae;Lee, Dong-Ryul;Lee, Keon-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1329-1338
    • /
    • 2021
  • Rain radar provides high spatio-temporal radar rainfall that can be used as input data to short-term precipitation forecasting models. Korea Institute of Civil Engineering and Building Technology (KICT) has developed a flash flood forecasting system that is providing flash flood forecasting based on short-term rainfall forecasts estimated by the radar rainfall. Accuracy of the radar rainfall as well as the short-term rainfall forecasts, however, can deteriorate when radar polarimetric variables have error. In this study, we develope real-time program that can correct the error inherent in the radar polarimetric variables. First, effect according to the correction of the error was verified using 363 rainfall events on non real-time. The accuracy (1-NE) of the radar rainfall was approximately 70% and correlation coefficient was higher than 0.8 after correcting the error on non real-time. The accuracy (1-NE) using the real-time program was also approximately 70% after correcting the error.

Compressive and Flexural Properties of Concrete Reinforced with High-strength Hooked-end Steel Fibers (고강도 후크형 강섬유로 보강된 콘크리트의 압축 및 휨 성능)

  • Wang, Qi;Kim, Dong-Hwi;Yun, Hyun-Do;Jang, Seok-Joon;Kim, Sun-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.209-217
    • /
    • 2021
  • This paper investigates the effect of high strength hooked-end steel fiber content and aspect ratio on the compressive and flexural performance of concrete. A total of ten mixtures were prepared and tested. Concretes with specific compressive strength of 30 MPa were reinforced with three different aspect ratios (l/d) of steel fibers 64, 67, and 80 and three different percentages of steel fibers 0.25, 0.50, and 0.75% by volume of concrete. Tensile strengths of steel fibers with l/d of 64, 67, and 80 are 2,000, 2,400, and 2,100 MPa, respectively. The compressive and flexural properties of plain and steel fiber-reinforced concrete (SFRC) mixtures were evaluated and compared. The experimental results indicated that the incorporation of high-strength hooked-end steel fibers had significant effects on the compressive and flexural performance of concrete. With the increase of steel fiber content, compressive performances, such as Poisson's ratio and toughness, of concrete were improved. The steel fibers with the least l/d of 67 resulted in a larger enhancement of compressive performances. The residual flexural strength, that is, post-cracking flexural resistance and toughness, of concrete is mainly depended on the dosage and aspect ratio of steel fibers. The residual flexural strength at serviceability (SLS) and ultimate limit state (ULS) defined in fib Model Code 2010 (MC2010) is increased as the fiber content and aspect ratio increase.

A Study on the Socio-economic Direct Effects of the Opening of the Gyeongbu Expressway for 50 Years (경부고속도로 개통 50년의 사회경제적 직접효과 평가 연구)

  • Yoo, Dayoung;Park, Byeonghun;Hong, Jungyeol;Choi, Yoonhyuk;Shon, Euiyoung;Park, Dongjoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.1
    • /
    • pp.119-131
    • /
    • 2021
  • This study quantitatively derived the direct socio-economic effects of the Gyeongbu Expressway, which opened in 1970, and suggested a methodological approach for more reliable results. The scenario was set when the Gyeongbu Expressway was not constructed in 1970, the opening of the Gyeongbu Expressway was delayed by 10 years, and the toll road between Seoul and Daejeon, or between Seoul and Gangneung was opened instead of the Gyeongbu Expressway as suggested by the World Bank. In addition, direct benefits were estimated by calculating and comparing the current vehicle operating costs, travel time costs, traffic accident costs, and environmental pollution costs. As a result, it was estimated that about 351 trillion won in direct benefits occurred, and it can be seen that the promotion of the construction project of the Gyeongbu Expressway at that time had a huge impact on South Korea's social economy.

Korea Stress Map 2020 using Hydraulic Fracturing and Overcoring Data (수압파쇄와 오버코어링 자료를 활용한 한국응력지도 2020)

  • Kim, Hanna;Synn, Joong-Ho;Park, Chan;Song, Won Kyong;Park, Eui Seob;Jung, Yong-Bok;Cheon, Dae-Sung;Bae, Seongho;Choi, Sung-Oong;Chang, Chandong;Min, Ki-Bok
    • Tunnel and Underground Space
    • /
    • v.31 no.3
    • /
    • pp.145-166
    • /
    • 2021
  • Korea Stress Map database is built by integrating actual data of 1,400 in-situ stress measurements using hydraulic fracturing and overcoring method in South Korea. Korea Stress Map 2020 is presented based on the guideline proposed by World Stress Map Project. As detailed data, stress ratio and maximum horizontal stress direction distribution for each region are also presented. The dominant maximum horizontal stress direction in the Korean Peninsula is from northeast to southeast, and the magnitude of the in-situ stress is relatively distributed. There is some stress heterogeneity caused by local characteristics such as topographical and geological properties. We investigated case studies in which the in-situ stress was affected by mountainous topography, difference in rock quality of fracture zone, presence of mine or underground cavities, and geological structure of fault zone.

Performance Analysis of Automatic Target Recognition Using Simulated SAR Image (표적 SAR 시뮬레이션 영상을 이용한 식별 성능 분석)

  • Lee, Sumi;Lee, Yun-Kyung;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.3
    • /
    • pp.283-298
    • /
    • 2022
  • As Synthetic Aperture Radar (SAR) image can be acquired regardless of the weather and day or night, it is highly recommended to be used for Automatic Target Recognition (ATR) in the fields of surveillance, reconnaissance, and national security. However, there are some limitations in terms of cost and operation to build various and vast amounts of target images for the SAR-ATR system. Recently, interest in the development of an ATR system based on simulated SAR images using a target model is increasing. Attributed Scattering Center (ASC) matching and template matching mainly used in SAR-ATR are applied to target classification. The method based on ASC matching was developed by World View Vector (WVV) feature reconstruction and Weighted Bipartite Graph Matching (WBGM). The template matching was carried out by calculating the correlation coefficient between two simulated images reconstructed with adjacent points to each other. For the performance analysis of the two proposed methods, the Synthetic and Measured Paired Labeled Experiment (SAMPLE) dataset was used, which has been recently published by the U.S. Defense Advanced Research Projects Agency (DARPA). We conducted experiments under standard operating conditions, partial target occlusion, and random occlusion. The performance of the ASC matching is generally superior to that of the template matching. Under the standard operating condition, the average recognition rate of the ASC matching is 85.1%, and the rate of the template matching is 74.4%. Also, the ASC matching has less performance variation across 10 targets. The ASC matching performed about 10% higher than the template matching according to the amount of target partial occlusion, and even with 60% random occlusion, the recognition rate was 73.4%.

Modeling 2D residence time distributions of pollutants in natural rivers using RAMS+ (RAMS+를 이용한 하천에서 오염물질의 2차원 체류시간 분포 모델링)

  • Kim, Jun Song;Seo, Il Won;Shin, Jaehyun;Jung, Sung Hyun;Yun, Se Hun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.7
    • /
    • pp.495-507
    • /
    • 2021
  • With the recent industrial development, accidental pollution in riverine environments has frequently occurred. It is thus necessary to simulate pollutant transport and dispersion using water quality models for predicting pollutant residence times. In this study, we conducted a field experiment in a meandering reach of the Sum River, South Korea, to validate the field applicability and prediction accuracy of RAMS+ (River Analysis and Modeling System+), which is a two-dimensional (2D) stream flow/water quality analysis program. As a result of the simulation, the flow analysis model HDM-2Di and the water quality analysis model CTM-2D-TX accurately simulated the 2D flow characteristics, and transport and mixing behaviors of the pollutant tracer, respectively. In particular, CTM-2D-TX adequately reproduced the elongation of the pollutant cloud, caused by the storage effect associated with local low-velocity zones. Furthermore, the transport model effectively simulated the secondary flow-driven lateral mixing at the meander bend via 2D dispersion coefficients. We calculated the residence time for the critical concentration, and it was elucidated that the calculated residence times are spatially heterogeneous, even in the channel-width direction. The findings of this study suggest that the 2D water quality model could be the accidental pollution analysis tool more efficient and accurate than one-dimensional models, which cannot produce the 2D information such as the 2D residence time distribution.

Load-carrying Capacity Evaluation Method for RC Slab Bridges using the Damage Evaluation Process (손상도 평가 프로세스를 이용한 RC 슬래브 교량의 공용내하력 평가 방안)

  • Lee, Hee-Hyun;Kim, Yuhee;Jeon, Jun-Chang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.543-553
    • /
    • 2023
  • This study was conducted to propose a simple method to evaluate the load-carrying capacity of RC slab bridges, which have been most frequently constructed in Korea. A number of RC slab bridges have been considerably deteriorated associate with the long service year. However, since these bridges are not included in the 1st and 2nd class infrastructures due to their short span length, they have been relatively neglected compared to other bridge types in terms of safety management. In the previous theoretical study, a process (draft) was proposed for evaluating the damage of RC slab bridges using the relationship between the displacement response ratio and the stiffness reduction rate derived by the measured displacement and natural frequency. In this paper, to verify the validity of the proposed damage evaluation process (draft), the results to the actual bridges were compared with the safety grade and the Matsui's deterioration index. In addition, to enhance the practical applicability of the existing process (draft), an improved method approximately evaluating the load-carrying capacity using only the measured natural frequency was presented. If an error of 10% of the load-carrying capacity is allowed, it is judged that the proposed damage evaluation process can be appropriately used not only for evaluating the safety of RC slab bridges, but also for determining priorities for their maintenance.

A Study of Rent Determinants of Small and Medium-Sized Office Buildings in Seoul Using a Dynamic Panel Model: Focusing on CBD and GBD Comparison (동적패널모형을 활용한 서울시 중소형 오피스 빌딩 임대료 결정 요인 연구: CBD(도심권)와 GBD(강남권) 비교를 중심으로)

  • NaRa Kim;JinSeok Yu;Jongjin Kim
    • Land and Housing Review
    • /
    • v.14 no.4
    • /
    • pp.47-62
    • /
    • 2023
  • Using the dynamic panel model, this study investigates rent determinants for small and medium-sized office buildings in Korea's CBD and Gangnam areas, key business districts. The results reveal that rents for small and medium-sized office buildings in CBD and Gangnam areas are influenced by macroeconomic fluctuations and characteristics of buildings and locations, suggesting a market with both spatial consumer and investment goods attributes. There are several investment implications as follows. First, even if the location in the CBD area is advantageous, the practical limitations in renovating aging small and medium-sized office buildings must be taken into account when investing. Second, parking conditions are a key factor influencing rent prices in CBD areas, so evaluating the parking facilities and improvement potential of small and medium-sized office buildings is essential for investors. Finally, due to the high sensitivity of Gangnam's small and medium-sized office market to macroeconomic trends, it's vital to prioritize monetary policy shifts as a key factor in investment decisions.

A Study on Seismic Liquefaction Risk Map of Electric Power Utility Tunnel in South-East Korea (국내 동남권 지역의 전력구 지반에 대한 지진시 액상화 위험도 작성 연구)

  • Choi, Jae-soon;Park, Inn-Joon;Hwang, Kyengmin;Jang, Jungbum
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.10
    • /
    • pp.13-19
    • /
    • 2018
  • Following the 2016 Gyeongju earthquake, the Pohang Earthquake occurred in 2017, and the south-east region in Korea is under the threat of an earthquake. Especially, in the Pohang Earthquake, the liquefaction phenomenon occurred in the sedimentation area of the coast, and preparation of countermeasures is very important. The soil liquefaction can affect the underground facilities directly as well as various structures on the ground. Therefore, it is necessary to identify the liquefaction risk of facilities and the structures against the possible earthquakes and to prepare countermeasures to minimize them. In this study, we investigated the seismic liquefaction risk about the electric power utility tunnels in the southeast area where the earthquake occurred in Korea recently. In the analysis of seismic liquefaction risk, the earthquake with return period 1000 years and liquefaction potential index are used. The liquefaction risk analysis was conducted in two stages. In the first stage, the liquefaction risk was analyzed by calculating the liquefaction potential index using the ground survey data of the location of electric power utility tunnels in the southeast region. At that time, the seismic amplification in soil layer was considered by soil amplification factor according to the soil classification. In the second stage, the liquefaction risk analysis based on the site response analyses inputted 3 earthquake records were performed for the locations determined to be dangerous from the first step analysis, and the final liquefaction potential index was recalculated. In the analysis, the site investigation data were used from the National Geotechnical Information DB Center. Finally, it can be found that the proposed two stage assessments for liquefaction risk that the macro assessment of liquefaction risk for the underground facilities including the electric power utility tunnel in Korea is carried out at the first stage, and the second risk assessment is performed again with site response analysis for the dangerous regions of the first stage assessment is reasonable and effective.