• 제목/요약/키워드: 국부좌굴 해석

Search Result 131, Processing Time 0.025 seconds

Evaluation of Local Buckling Strength of Stiffened Plates under Uni-axial Compression due to Closed-section Rib Stiffness (폐단면리브 강성에 따른 일축압축을 받는 보강판의 국부좌굴강도 평가)

  • Choi, Byung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.949-954
    • /
    • 2013
  • Generally, structural plates under axial compression should be stiffened by longitudinal stiffeners in order to enhance the buckling strength. Though U-shaped ribs would be more efficient for the stiffened plate system, there is in the absence of a proper design guides or relevant research results. Thus this study is aimed to examine the local buckling behavior of stiffened plates with U-section ribs. 3-dimensional analysis models which include 3 types of U-shaped longitudinal stiffeners were simulated by using the finite element code ABAQUS. The bifurcation analysis were conducted and then the buckling analysis results are compared with the theoretical equation values. It is found that the rotational constraint effect provided by the U-ribs should increase the local buckling strength. Some features drawn from a series of parametric study results are summarized.

Large Deflection Analysis of a Plane Frame with Local Bending Collapse (국부적 굽힘붕괴를 수반하는 평면프레임의 대변형 해석)

  • 김천욱;원종진;강명훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1889-1900
    • /
    • 1995
  • In this study, a large deflection analysis of a plane frame composed of a thin-walled tube in investigated. When bent, a thin-walled tube is usually controlled by local buckling and subsequent bending collapse of the section. So load resistance reaches the yield level in a thin-walled rectangular tube. This relationship can be divided into three regimes : elastic, post-buckling and crippling. In this paper, this relationship is theoretically presented to be capable of describing nonlinearities and a stiffness matrix is derived by introducing a compound beam-spring element. A numerical analysis uses a constant incremental energy method and the solution is obtained by modifying stiffness matrix at elastic/inelastic stage. This analytical results, load-deflection paths show a good agreement with the test results.

Local Buckling Analysis of the Punch in stamping Die and Its Design Modification (타발금형펀치의 국부 좌굴해석 및 설계변경)

  • Kim, Yong-Yun;Lee, Dong-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.25-29
    • /
    • 1999
  • The lead frame manufactured by press stamping process, is an important part of semiconductor. The recent technical trend of semiconductor, chip sized and high performance package technology, requires the lead frame to be of more multi-leads and of fine ILP (Inner Lead Pitch). As the ILP is getting finer, its corresponding punch of the stamping die is getting narrower. The punch narrower than its stamping limit has been broken due to local buckling. This paper analyzed the phenomena of punch breakdown. Moreover, the punch design was modified to increase the critical limit of buckling force. This paper, also, suggested new design rules of the punch, which asks the modification of its lead frame design that has to be considered in the stage of semiconductor package design. The new design rules of lead frame design yields a good reliability of semiconductor package as well as a good quality of lead frame.

  • PDF

Finite element analysis on local buckling strength of hexagon columns with press-braked sections (절곡 제작한 6각형 단면 기둥 국부좌굴강도의 해석적 평가)

  • Park, Seong-Mi;Choi, Byung-Ho
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12b
    • /
    • pp.461-464
    • /
    • 2011
  • 대형 다각형 단면 기둥부재의 제작은 용접이나 절곡 등의 다양한 혼합방식으로 이루어 질 수 있다. 이러한 제작방식의 차이에 따라 외력작용 이전의 초기상태에 상당한 차이가 발생한다. 그러나 절곡과 용접이 혼합된 다각형 단면 기둥의 초기 상태를 고려하는 방안에 대한 지침은 분명히 제시되고 있지 않다. 이에 본 연구에서는 다각형 단면 기둥 제작방식에 따른 초기상태가 국부좌굴강도에 미치는 영향을 6각형 단면 기둥모델을 대상으로 해석적으로 평가해 보고자 한다.

  • PDF

Analysis of Buckling Causes and Establishment of Reinforcement Method for Support of Plate Girder Bridge (플레이트 거더교 지점부의 좌굴발생 원인분석 및 보강방안 수립)

  • Ok, Jae-Ho;Yhim, Sung-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.520-526
    • /
    • 2019
  • I-type girders are widely applied as very economical sections in plate girder bridges. There has been research on developing composite laminated panels, curved plates reinforced with closed-end ribs, and new forms of ribs and compression flanges for steel box girders. However, there is a limitation in analyzing the exact cause of local buckling caused by an I-type girder's webs. Therefore, an I-type girder's web was modeled using the finite element analysis program LUSAS 17.0 before and after reinforcement. We checked for the minimum thickness criteria presented in the Korea highway bridge design code, and the cause of buckling after performing a linear elastic buckling analysis of dead and live loads was analyzed. Before reinforcement, an eigenvalue (λ1) at the 1st mode was 0.7025, the critical buckling load was smaller than the applied load, and there is a buckling. After reinforcement, when applying vertical and horizontal stiffeners to the web part of the girder at support, a Nodal line was formed, the eigenvalue was 1.5272, and buckling stability was secured. To improve buckling trace of the girder at the support, an additional plate was applied to the web at the support to ensure visual and structural safety, but buckling occurs at center of web. The eigenvalue (λ1) was 3.5299, and this method is efficient for reinforcing the web of the support.

Evaluation of Rotation Capacity of Steel Moment Connections ConsideringInelastic Local Buckling - Parametric Studies (비탄성 국부좌굴을 고려한 철골 모멘트 접합부의 회전능력에 대한 변수 연구)

  • Lee, Kyung Koo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.625-632
    • /
    • 2008
  • In the companion paper (Model Development), an analytical model estimating the available rotation capacity of fully restrained beam-column connections in special steel moment-resisting frames was proposed. In this paper, two limit states were considered as the connection rotation capacity criteria: (i) strength degradation failure when the strength falls below the nominal plastic strength due to the local buckling of the beam's cross-section and (ii) low-cycle fatigue fracture caused by plastic strain accumulation at the buckled flange after only a few cycles of high-amplitude deformation. A series of analyses are conducted using the proposed model with two limit states under monotonic and cyclic loadings. Beam section geometric parameters, such as flange and web slenderness ratios, varied over the practical ranges of H-shapedbeams to observe their effect on the rotation capacity and low-cycle fatigue life of pre-qualified WUF-W connections.

Structural Analysis of Composite Sandwich Panel under Compression Loading (압축하중을 받는 복합재료 샌드위치 패널의 구조해석)

  • Kim, Kwang-Soo;Jang, Young-Soon
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.9-16
    • /
    • 2010
  • In this study, structural analyses were carried out on the composite sandwich panel which was tested under compression loading. In the structural analyses, three types of finite element modelling were considered and linear buckling analysis and nonlinear analysis were performed for each FE-model. Through the analyses, it was found that shell elements for face parts and solid elements for core part were appropriate for the better prediction of the buckling load of the panel. If the material failure of the face is critical than overall buckling of the sandwich panel, the use of one shell element through the thickness direction was suitable in the FE-model for the better predictions of failure location and failure load.

Analysis of Wrinkling for Creased Thin Membrane (접힌 자국이 있는 멤브레인의 주름 거동 해석)

  • Woo, Kyeong-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.851-858
    • /
    • 2008
  • In this paper, the wrinkling behavior of vertically creased corner-loaded square membranes was studied using geometrically nonlinear post-buckling analysis. The membranes were modeled using shell elements, and the meshes were seeded with semi-random geometrical imperfection to instigate the buckling deformation. A pristine and creased membranes with various initial deployment angles were considered in the analyses and the results were compared. Results showed that local wrinkles initiated near the corner where the higher load was applied, which grew to form a single diagonal global wrinkle as the load ratio increased. It was also found that the local wrinkle initiation and the global wrinkle formation were significantly dependent on the initial deployment angles.

Flexural Strength of HSB Steel Girders Due to Inelastic Lateral-Torsional Buckling - Sections with Slender Web (HSB 강거더의 비탄성 횡비틂좌굴에 의한 휨강도 - 세장 복부판 단면)

  • Cho, Eun-Young;Shin, Dong-Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.217-231
    • /
    • 2012
  • The flexural behavior of HSB I-girder with a non-slender web attributed to inelastic lateral-torsional buckling under uniform bending was investigated using nonlinear finite element analysis of ABAQUS. The girder was assumed to have a compact or noncompact web in order to prevent premature bend-buckling of the web. The unbraced length of the girder was selected so that inelastic lateral-torsional buckling governs the ultimate flexural strength. The compression flange was also assumed to be either compact or noncompact to prevent local buckling of the elastic flange. Both homogeneous sections fabricated from HSB600 or HSB800 steel and hybrid sections with HSB800 flanges and SM570-TMC web were considered. In the FE analysis, the flanges and web of I-girder were modeled as thin shell elements. Initial imperfections and residual stresses were imposed on the FE model. An elasto-plastic strain hardening material was assumed for steel. After establishing the validity of the present FE analysis by comparing FE results with test results in existing literature, the effects of initial imperfection and residual stress on the inelastic lateral-torsional buckling behavior were analyzed. Finite element analysis results for 96 sections demonstrated that the current inelastic strength equations for the compression flange in AASHTO LTFD can be applied to predict the inelastic lateral torsional buckling strength of homogeneous and hybrid HSB I-girders with a non-slender web.

An Investigation into differences between codes for the Moment Strength of Deck Plates (데크플레이트의 휨 강도에 관한 기준 비교 연구)

  • Shin, Tae Song
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.25-31
    • /
    • 2003
  • This research aimed to experimentally and theoretically investigate the moment strength of deck plates. A moment experiment was carried out using a full-scale 14 specimen. To prevent local buckling, the point load was applied at 1/4 points. After the experiment, theoretical analysis was conducted and the differences between various codes were identified. The experimental results were compared with AISI (the American Iron and Steel Institute), EC (Euro Code) 3, and KS (Korea Standard) codes. Analysis results are summarized as follows: (1) the failure mode was influenced by local buckling at the midpoint of the beam and/or at the intermediate loading point: (2) if yielding first occurred at the tension side, the moment strength would increase as the plastic reservation of the tension zone acted: (3) the experimental results were closest to the EC3 codes in which the partial plastic reservation was considered; (4) statistical evaluation based on the EC3 Annex Z showed that the partial resistance safety coefficient calculated applying to the EC3 formula, $^{\circ}{_M}$, was placed within 1.1 which was the target value of EC3 code; and (5) the analytical power of AISI and KS codeswere expected to improve into the level of EC3 codes if the concept of plastic reservation of the tension side would be introduced to them.