DOI QR코드

DOI QR Code

Analysis of Buckling Causes and Establishment of Reinforcement Method for Support of Plate Girder Bridge

플레이트 거더교 지점부의 좌굴발생 원인분석 및 보강방안 수립

  • Ok, Jae-Ho (Department of Civil Engineering, University of Seoul) ;
  • Yhim, Sung-Soon (Department of Civil Engineering, University of Seoul)
  • 옥재호 (서울시립대학교 토목공학과) ;
  • 임성순 (서울시립대학교 토목공학과)
  • Received : 2019.07.27
  • Accepted : 2019.11.01
  • Published : 2019.11.30

Abstract

I-type girders are widely applied as very economical sections in plate girder bridges. There has been research on developing composite laminated panels, curved plates reinforced with closed-end ribs, and new forms of ribs and compression flanges for steel box girders. However, there is a limitation in analyzing the exact cause of local buckling caused by an I-type girder's webs. Therefore, an I-type girder's web was modeled using the finite element analysis program LUSAS 17.0 before and after reinforcement. We checked for the minimum thickness criteria presented in the Korea highway bridge design code, and the cause of buckling after performing a linear elastic buckling analysis of dead and live loads was analyzed. Before reinforcement, an eigenvalue (λ1) at the 1st mode was 0.7025, the critical buckling load was smaller than the applied load, and there is a buckling. After reinforcement, when applying vertical and horizontal stiffeners to the web part of the girder at support, a Nodal line was formed, the eigenvalue was 1.5272, and buckling stability was secured. To improve buckling trace of the girder at the support, an additional plate was applied to the web at the support to ensure visual and structural safety, but buckling occurs at center of web. The eigenvalue (λ1) was 3.5299, and this method is efficient for reinforcing the web of the support.

플레이트 거더교에서 I형은 매우 경제적인 단면으로 넓게 적용되고 있으며 지금까지 복합적층의 패널, 폐단면 리브로 보강된 곡판, 새로운 형태의 리브, 새로운 형식의 강박스거더 압축플랜지 개발 등의 좌굴거동에 대한 연구가 활발히 진행되었다. 하지만 이는 I형 거더의 복부판에서 발생한 국부좌굴의 원인을 정확하게 분석하는데 한계가 있었다. 따라서 본 논문에서는 실제 적용된 I형 거더의 복부판이 도로교설계기준에서 제시하는 최소두께 기준의 만족여부와 보강전과 후에 대하여 유한요소해석 프로그램 LUSAS 17.0을 사용하여 모델링하고 고정하중과 활하중에 대한 선형탄성 좌굴 해석을 수행 후 좌굴발생의 원인을 분석하였다. 보강 전은 1mode의 고유치(λ1) 값이 0.7025로 임계좌굴하중이 작용하중보다 작아 좌굴이 발생하였지만 보강 후는 거더 지점부의 복부판에 수직 및 수평보강재를 추가함에 따라 여기에 Nodal line이 형성되고 좌굴에 대한 저항강도가 증가하여 1mode의 고유치(λ1) 값이 1.5272로 좌굴하중에 대한 안정성을 확보한 것으로 분석되었다. 또한 지점부의 좌굴 흔적을 개선하기 위해 복부판의 일부에 덧댐판을 추가한 보강방안에 대한 좌굴해석 결과 1mode의 좌굴이 복부판의 지점부가 아닌 중앙부에서 발생하였고 고유치(λ1)값이 3.5299로 보강 후보다 2배 이상 커서 향후 지점부의 복부판 보강방안으로는 효과적일 것으로 기대된다.

Keywords

References

  1. Korean Institute of Bridge and Structural Engineers, Korea Highway Bridge Design Code, pp.3-37, 3-98-99, 3-105, 2010.
  2. S. P. Heo, W. H. Yang, K. D. Sung, M. R. Cho, "A Study on the Buckling and Postbuckling Behaviors of Laminated Composite Plate and Stiffened Laminated Composite Panels by Finite Element Method" Journal of the Computational Structural Engineering, Vol.12, No.4, pp.599-606, December 1999.
  3. S. B. Chu, P. N. Lee, "Buckling Behavior Analys of Stiffened Plates Having Various Types of Ribs", Korea Institute for Structural Maintenance and Inspection, Vol.2015, No.4, pp.229-232, April 2015. http://db.koreascholar.com/article.aspx?code=299669
  4. S. B. Chu, P. N. Lee, "Buckling Behavior of Plates Stiffened with the New Type Ribs", Journal of Korea Society of Steel Construction, Vol.30, No.1, pp.59-66, February 2018. https://doi.org/10.7781/kjoss.2018.30.1.059
  5. A. N. Andico, J. Y. Kwak, B. H. Choi, "Parametric Study on Buckling Behavior of Longitudinally Stiffened Curved Panels by Closed-section Ribs", Journal of the Korea Academia-Industrial cooperation Society, Vol.19, No.1, pp.714-721, January 2018. http://dx.doi.org/10.5762/KAIS.2018.19.1.714
  6. D. Y. Kim, S. C. Lee, "Elastic Buckling and Ultimate Strength Behaviors of Steel Box Girders with Folded Compression Flanges", Journal of Korea Society of Steel Construction, Vol.30, No.4, pp.217-224, August 2018. http://dx.doi.org/10.7781/kjoss.2018.30.4.217
  7. LUSAS. Version 17.0 Manual, FEA Ltd., 2019. http://www.lusas.com