• Title/Summary/Keyword: 국부좌굴

Search Result 231, Processing Time 0.025 seconds

A Study on the Moment Capacity of H-Section Flexural Members with Local Buckling (국부좌굴이 발생하는 H-형강 휨부재의 강도에 관한 연구)

  • Seo, Gun-Ho;Seo, Sang-Jung;Kwon, Young-Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.647-657
    • /
    • 2011
  • This paper describes the moment capacity of flexural members with local buckling based on a series of FE and experiment results. Thin-walled flexural members undergo local, lateral-torsional, or interactive buckling according to the section geometries and lateral boundary conditions. Flexural members with large width-to-thickness ratios in the flanges or the web may undergo local buckling before lateral-torsional buckling. Local buckling has a negative effect on the flexural strength based on the lateral-torsional buckling of flexural members. This phenomenon should be considered in the estimation of the flexural strength of thin-walled sections. Flexural members with various width-to-thickness ratios in their flanges and web were analyzed. Initial imperfections in the local buckling mode, and residual stresses, were included in the FE analyses. Simple bending moment formulae for flexural members were proposed based on the FE and test results to account for local and lateral-torsional buckling. The proposed bending moment formulae for the thin-walled flexural members in the Direct Strength Method use the empirical strength formula and the grosssection modulus. The ultimate flexural strengths predicted by the proposed moment formulae were compared with the AISC (2005), Eurocode3 (2003), and Korean Highway Bridge Design Specifications (2010). The comparison showed that the proposed bending moment formulae can reasonably predict the ultimate moment capacity of thin-walled flexural members.

The Compressive Strength of Longitudinally Stiffened Plates Undergoing Local and Distortional Buckling (국부좌굴과 뒤틀림좌굴이 발생하는 종방향 보강재로 보강된 강판의 압축강도)

  • Park, Ho-Sang;Seo, Sang-Jung;Kwon, Young-Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.3
    • /
    • pp.219-228
    • /
    • 2010
  • This paper describes an experimental research on the structural behavior and the ultimate strength of longitudinally stiffened plates subjected to local, distortional, or mixed-mode buckling under compression. The stiffened plate undergoes local, distortional, or interactive local-distortional buckling according to the flexural rigidity of the plate's longitudinal stiffeners and the width-thickness ratios of the sub-panels of the stiffened plate. A significant post-buckling strength in the local and distortional modes affects the ultimate strength of the longitudinally stiffened plate. Compression tests were conducted on stiffened plates that were fabricated from 4mm-thick SM400 steel plates with a nominal yield stress of 235MPa. A simple strength formula for the Direct Strength Method based on the test results was proposed. This paper proves that the Direct Strength Method can properly predict the ultimate strength of stiffened plates when the local buckling and distortional buckling occur simultaneously or nearly simultaneously.

Experimental Study on Performance Evaluation of Steel Frame with Buckling Control Brace (좌굴제어 가새를 가진 가새골조의 성능향상에 관한 실험적 연구)

  • Lee, Sang-Ju;Han, Sang-Eul;Noh, Sam-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.181-188
    • /
    • 2007
  • This research presents two methods to prevent local buckling from circular tube brace and then verify their performance capacity through a cyclic loading test. As control methods on local buckling, one is to restrict local buckling as attaching cover plate at range of buckling. And the another is to exclude danger of buckling as inserting contraction device with rod and spring at the center of brace. The purpose of this research is to develop structural device for restriction of local buckling or for exclusion of its. And we investigate appliance of suggested methods through an experiment. We also estimate the improvement of performance capacity in a quantitative respect.

Analysis on the Elastic Shear Buckling Characteristics of Corrugated Steel Plate in Accordance with Corrugation Shape (형상에 따른 주름강판의 탄성전단좌굴 특성 및 경향성 분석 연구)

  • Shon, Su-Deok;Yoo, Mi-Na;Lee, Seung-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.11-20
    • /
    • 2014
  • This paper aims at comparing and analyzing shear buckling characteristics between sinusoidal corrugation shape and trapezoidal one. For this, I adopted the equal-length trapezoidal corrugation and sinusoidal one for the analytical models, and analyzed their shear buckling characteristics through linear buckling analysis and on its theory. Generally, the shear buckling shapes of corrugated steel plates are classified into local buckling, global buckling, and interactive buckling from the two buckling modes. Sinusoidal corrugation shape, unlike trapezoidal corrugation, does not have flat sides, which causes another tendency in shear buckling mode. Especially, the changes and different aspects of shear buckling on the boundary between local buckling and global buckling appear in different corrugation shapes. According to the analysis results, interactive buckling mode appeared on the boundary of local buckling and global bucking in trapezoidal corrugation. However, in the case of corrugated steel plates with sinusoidal configuration, interactive buckling mode appeared in the part where global bucking takes place. Besides, trapezoidal shapes are of advantages on shear buckling resistance in the local buckling section, and so are sinusoidal shapes in the global buckling section.

A Study on the Design Criteria Relating to the Local Buckling of Pultruded FRP Structural Compression Members (펄트루젼 구조압축재의 국부좌굴 설계규준 개발에 관한 연구)

  • Joo, Hyung Joong;Lee, Seung Sik;Yoon, Soon Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.597-606
    • /
    • 2006
  • Since FRP materials have various advantages over steel, many research activities to use them for the civil engineering applications are now in progress. The present paper deals with the local buckling behavior of FRP pultruded members as a first step toward the development of design criteria. In the design of compression members, it is very important to know not only if local buckling occurs or not but also which plate component governs local buckling, but it is not easy to perform this work in a rigorous manner. In the present paper, a simple and accurate equation which can compute the coefficients of buckling of orthotropic plates and local buckling of pultruded compression members is suggested by performing rigorous analysis, energy analysis, and parametric study. The local buckling strength and the plate component governing the local buckling behavior of thin-walled pultruded compression members can be easily determined by using the proposed equation.

Determination of the Allowable Load for Trussed Web Beam (트러스웹을 가진 보의 허용하중 산정)

  • Kim, Myeong-Han
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.2
    • /
    • pp.1-5
    • /
    • 2010
  • The efficient beam members for modern greenhouse need to be much lightweight with the required flexural and buckling strength. To confirm the applicability and practicality of the trussed web beam recently proposed for column and beam members of greenhouse, the flexural behavior and buckling characteristics were analyzed by the finite element approach. On the basis of analytical studies, the member design process was presented considering the lateral and local buckling behavior. Also, two improved alternatives which were capable of retaining the lateral and local buckling effectively were suggested.

Local Buckling and Optimum Width-Thickness Ratios of I-Beams in Fire (화재시 I-형강 보의 국부좌굴과 최적 폭-두께비)

  • Kang, Moon Myung;Yun, Young Mook;Kang, Sung Duk;Plank, R.J.
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.491-498
    • /
    • 2005
  • This study involves the development of a computer program to analyze the local buckling stresses for the flange and the web of I-beams under compression at elevated temperatures, and the optimization algorithm to analyze the optimum width-thickness ratios which does not occur their local buckling prior to yield failure. The high-temperature stress-strain relationships of steel used in this study were based on EC3 (Eurocode3) Part1.2 (2000b). In this study, the local buckling stresses and the optimum width-thichness ratios were analyzed considering the influences of the yield stress, local buckling coefficients and width-thickness ratios of the flange and the web. Design examples show the applicability of the computer program developed in this study.

Determination of Efficient Shear Stud Spacing in Steel-Concrete Panel(SCP) considering Local Buckling Behavior (국부좌굴 현상을 고려한 강판 콘크리트 패널의 효율적인 스터드 배치 간격 설정)

  • Kim, JoungRae;Lee, WonHo;Kwak, Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.479-484
    • /
    • 2017
  • In this paper, finite element analysis of Steel-Concrete panel(SCP) was conducted considering the local buckling behavior and the optimized design of shear studs arrangement was studied by comparing with design guidelines. If the spacing of the studs of SCP is widened, it is easy to be manufactured and the weight fo members become lighter. On the other hand, the steel plate would be vulnerable to the local buckling behavior. Therefore, the guidance and design of SCP limit the maximum spacing of the studs to prevent the development of shear cracks and local buckling, however this is based on the design criteria of the other composite structures. Parameter studies with changes in stud spacing on steel plate and SCP are conducted and the obtained result was compared with values given in design guidelines.

Analysis of Cold-Formed Steel Beams Considering Local Buckling and Lateral Buckling (국부좌굴과 횡좌굴을 고려한 냉간성형 ㄷ 형강보의 해석)

  • Jeon, Jae-Man;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.77-86
    • /
    • 2006
  • The stress analysis of cold-formed channel section steel beams under transverse load is presented. The local buckling as well as the lateral buckling effects are included in the analysis. The analytical model is developed based on the thin-walled beam theory, and a one-dimensional finite element model is formulated to solve the analytical model. Numerical results are compared with AISI code. It shows that the proposed model is appropriate for predicting of stress as well as deflection of the cold-formed channel section beam.

  • PDF

Elastic Interactive Shear Buckling Behavior of Trapezoidally Corrugated Steel Webs (제형파형강판 복부판의 탄성 연성전단좌굴 거동)

  • Yi, Jong Won;Gill, Heung Bae;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.707-715
    • /
    • 2005
  • Corrugated webs have been used for composite prestressed concrete box girder bridges. Innovative steel plate girders using corrugated webs have been proposed. It has been found that analytical and experimental researches conducted to determine the strength of trapezoidally corrugated webs can fail with respect to three different buckling modes: local, global, and interactive shear buckling. Shear buckling capacity equations based on classical and orthotropic plate buckling theories have been proposed,but these equations show some differences. In this paper, geometric parameters that influence interactive shear buckling behavior with interaction effects are identified via extensive bifurcation buckling analysis using the finite element meth.